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Summary of Accomplishments

This document is a synthesis of two semi-annual reports (#5 and #6). It covers the period from
March 1, 1991 through February 29, 1992. The general topic of research was:

Sub-topics were:

- B Testing, Reliabili rowth, and Design T ility with Ri
Evaluation. The work on this topic is in progress and some encouraging preliminary
results are already available. Several reports and papers are available.

- Software Risk Management. Work on the topic is starting as far as highly
dependable systems are concerned. However, some preliminary groundwork which
will enable transition of the study to critical aerospace applications has already been
undertaken. This preliminary work consists of studies relating to the general
principles of software risk management, acquisition of tools, and analysis of
reliability and availability of very large telecommunications systems.

- Software Fault-Tolerance. Studies in this area are in the process of being completed.

Structure based testing, reliability growth modeling, design
testability, and risk evaluation

The objective of this work is to continue development of code coverage based reliability and test
effectiveness models in order to improve fault-avoidance and fault-elimination during software
production. These models relate the quality of the testing, as measured through metrics such as
branch coverage, path coverage, definition-use pair coverage, etc., to the residual defect levels and
reliability of the software, and therefore are intended to efficiently guide the testing process as well
as offer insight into operational reliability of the product. An existing tool for computing different
software code coverage measures is in the process of being extended to include new and promising
metrics encompassed by the term "condition testing". A prototype is already available. The tool is
being used to investigate RSDIMU software. The theory of coverage based testing has been
extended to include more complex models. The models still need to be validated using experimental
results from the RSDIMU test suite.

* Extended the BGG software tool for static and dynamic analysis of control
and data flows in Pascal code to include reduced data-flow graphing and
"condition testing" (or BRO) metrics.

The goal is to develop a sophisticated software tool for collection of complexity and
execution coverage information on (RSDIMU) Pascal code.

Accomplishments:

The Basic Graph Generation and Analysis tool set (BGG), for dynamic and static analysis
of Pascal code has been extended to allow analysis of reduced data-flow graphs and to
include Tai's "condition based" testing measures.
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Reduced data-flow graphs are useful in analyzing data-flow anomalies in the code. They are
being used to study design testability issues.

Formulated several new coverage-based reliability growth and test
effectiveness models. The study of software reliability and availability
models suitable for use during development of highly dependable software
continues.

The general goal of this part of the study is to provide additional theoretical and empirical
basis for estimation of the reliability and availability of highly dependable software. Some of
the problems associated with such models are their accuracy and the size of their predictive
confidence bounds, and the inclusion into the models of the reliability of re-usable
components and combinations of components developed at different sites with under
different conditions.

Accomplishments:
The information collected with BGG has been used to formulate several preliminary

metrics over a population of programs. Full coverage of hierarchically higher constructs
(e.g. branch coverage is higher than statement coverage) would be expected to offer a better
reliability of the final product. Additional experimental and theoretical work is needed.

Designing software for testability.

predicting behavior of pj ¢ - In addition, the study will provide
theoretical and empirical basis for pre-release and operational phase estimation of the
residual fault counts, reliability and availability of highly dependable software through
combined coverage and time based models. Some of the problems associated with such

models are the choice of the metric, the accuracy of point estimates, the size of the predictive

conditions.
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Accomplishments:

Research is still in progress. Currently BGG extensions that would enable computation of
appropriate metrics are not fully implemented. The SDT CASE tool based on the Software
Description Languages for development of real-time systems is on order and is expected to
be delivered sometime this summer. The tools allows expression of software designs in
therms of a special design language. Code generation is automatic. The code would be
analyzed via BGG and design structures which generate most testable code would be
sought. Also in progress is development of a Software Risk Management system which
would coordinate software risk management activities associated with the development of
critical products. It is expected thata fault-tree analysis tool would be combined with SDT
and BGG outputs to attempt fault-tree retroactive analysis in order 10 identify safest design

strategies and code generation approaches.

Papers and reports. Several preliminary reports are available. Two papers
are in preparation.

The tool set has been described in a conference paper. BGG extensions in the area of are
described in Appendix I1. Journal paper describing the tool set and its theoretical
underpinnings (particularly some new metrics such as control and data-flow based
definition-use-redefinition chains, BRO metrics, etc.) is in preparation. A paper on coverage
based reliability models will be presented in June 1992 at the _Quality and Productivity

Research Conference (Corning, NY). Journal paper is in preparation.

Vouk, M.A., and Coyle, RE., "BGG: A Testing Coverage Tool," Proc. Seventh Annual
Pacific Northwest Software Quality Conference, Lawrence and Craig, Inc., Portland, OR,
pp212-233, September 1989.

Borger D, "BGG User's Manual®, NCSU Department of Computer Science, 1990.
(available on request)

Vouk, M.A. and McAllister, D.F., "Software Reliability through Fault-Avoidance and
Fault-Tolerance”, NAG-1-983 presentation, NASA-LaRC, Hampton, May 16, 1990.

Vouk, M.A. and McAllister, D.F., "Software Reliability through Fault-Avoidance and
Fault-Tolerance”, NAG-1-983 presentation, NASA-LaRC, Hampton, January 15, 1991
Vouk, M.A. and Tai, K.C "Software Testing and Reliability”, Summary of the Presentation
Prepared for the Workshop on Issues in Software Reliability Estimation, Purdue University,
May 21, 1991 (Appendix I)

K.C. Tai, "Theory of Condition-Based Software Testing", Draft Paper, September 1991
(available on request)

Vouk, M.A., Tai, K.C,, Staats W., Koorapathy H. and O'Connor, J., "Extensions to
BGG Testing Coverage Tool," report in preparation (Appendix II).

Vouk, M.A., "Modeling Software Reliability and Fault Removal During Structure Based
Testing," 9th Quality and Productivity Research Conference, Corning, New York, June
1992 (paper accepted, final version in preparation)

Reliability growth models and software risk management

*

Reliability and availability models suitable for use during development of
highly dependable software-based systems are being developed and
evaluated.

The goal is to provide additional theoretical and empirical basis for estimation of the

reliability and availability of highly dependable software. These models include coverage

based and time-based models. Some of the problems associated with such models are their
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accuracy and the size of their predicti-z confidence bounds, and the inclusion into the
models of the reliability of re-usable components and combinations of components
developed at different sites with under different conditions. Expected future
accomplishments include: extended software testability modeling based oa control and data
flow construct coverage, preliminary model of a multi-component (re-use and build)
reliability and availability, and formulation of a reliability models driven by specification and
design error analysis, so that problem areas can be identified prior to software
implementation.

Accomplishments:

Reliability and availability models suitable for use with very large critical multi-component
telecommunications systems are being studied. Particular attention is directed at multi-state
non-homogeneous Markov and semi-Markov models which can be used to account for a
variety of system failure types, as well as for hardware/software interaction. The knowledge
gained will be used in building appropriate models for the highly-dependable aerospace
applications. '

* Software process and risk management model appropriate for development
of very large and complex critical software systems is being studied.

The goal of this part of the study is to extend theoretical and empirical basis for risk
management of highly dependable software. Some of the problems associated with such
models are their predictive accuracy, the inclusion into the models of the risks associated
with re-usable components and combinations of components developed at different sites
under different conditions. Existing risk based software development models such as the
Spiral Model will be evaluated and if possible supplemented with state of the art reliability
models. Expected future accomplishments include: incorporation of coverage based
software reliability models into existing risk models and development of a new or extended
models, incorporation of existing and new multi-component (re-use and build) reliability
and availability models into a risk-driven development model for highly dependable
software, investigation of predictive properties of the existing and new risk models drive by
requirements and design change and error reports.

Accomplishments:

The models for software process and risk management models are being reviewed for
relevance to highly dependable systems. A research prototype of a software process and risk
management system is under constructions. The system is expected to provide guidance for
risk-based process and software design and provide risk evaluation tools such as software
reliability and availability estimation modeling, fault-tree analysis, schedule analysis and
statistical decision making.

* Reports and papers in preparation:

1. D.S. Borger. M.A. Vouk, "Modeling the Behavior of Large Software Projects”,
NCSU Center for Communications and Signal Processing, Technical Report
TR-91/19, June 91.

2. M.A. Vouk, Proc. "Engineering of Telecommunications Software", TRICOM '92,
pp 281-296, February 1992.

2. R. Cramp, M.A. Vouk, W. Jones, "On Operational Availability of a Large
Software-Based Telecommunications System", submitted to ISSRE92.
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Evaluation of Consensus Voting, Consensus Recovery Block, and
Acceptance Voting

‘The objective of this study is to investigate advanced software fault-tolerance models in order to
provide alternatives and improvements in situations where simple software fault-tolerance strategies
break-down. One such situation is the presence of significant inter-version failure correlation which,
for example, makes reliable voter operation problematic. We have evaluated an improved voting
strategy called Consensus Voting (CV) which automatically adapts to different version reliability and
output space cardinality characteristics. CV reliability performance is always as good or better than
that of majority voting. We have also evaluated performance of Consensus Recovery Block (CRB)
and Acceptance Voting (AV) models. From the cost and reliability perspective the CRB model is
superior to all investigated stand-alone voting schemes, even in the presence of failure correlation.
The AV scheme reduces, or completely eliminates, as many wrong answers as possible by
acceptance testing them before dynamically voting on them. AV is very dependent on the reliability
of the acceptance test, but under special circumstances AV reliability and safety performance can be
better than that of CRB or CV.

* The reliability performance of Consensus Voting (CV) was validated using
RSDIMU software. From the reliability perspective CV is superior to
majority voting as a stand-alone voting technique .

The goal of the study was to validate effectiveness of Consensus Voting, a technique
theoretically shown to posses considerable positive auto-adaptive properties in small output
spaces and in the presence of highly correlated failures.

Accomplishments:

a) Analyses confirm the theoretical and simulation results that the net effect of failure
correlation is to change the size of the output space in which a voter makes decisions.

b) Consensus Voting (CV) may in part compensate for the problems that otherwise arise
in the presence of failure correlation with classical voting strategies such as Majority
Voting. Consensus voting automatically adapts to different component reliability and
output space cardinality characteristics.

c) Theory prediction that in small output spaces CV performs as well or better than
majority voting, while in large output spaces its performance compares with 2-out-of-
n voting was confirmed. This was confirmed using RSDIMU programs.

* The reliability and safety performance of Consensus Recovery Block (CRB)
was validated using RSDIMU software. From the reliability perspective
CRB is superior to any stand-alone voting technique.

The goal of the study was to validate effectiveness of Consensus Recovery Block, a
technique theoretically shown to superior to simple voting.

Accomplishments:

a) Analyses confirm the theoretical and simulation results that CRB is a superior
technique from the standpoint of reliability.

b) CRB remains superior even in the presence of considerable inter-version failure

correlation, although attention must be paid to the choice of the strategy used in the
voting stage (e.g. in some cases CRB with MV front end performs better than CRB
with CV).
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) CRB safety properties are good with high reliability versions, but are inferior to
Acceptance Voting, or even simple Recovery Block strategies, for medium to low
reliability versions.

* The reliability and safety performance of Acceptance Voting (AV) was
validated using RSDIMU software. Under special circumstances AV
reliability and safety performance can be better than that of CRB or CV.

The goal of the study was to validate effectiveness of Acceptance Voting (AV), a technique
designed to compensate for some problems that arise with CRB and CV in very small output
spaces and under very high failure correlation. '

Accomplishments:

a) Analyses confirm the theoretical and simulation results that under special
circumstances AV reliability performance can be better than that of CRB, or CV.
For example, in binary output space, with N >5, there are regions of version
reliability where AV gives better system reliabilities than CRB or CV models.

b) In general, AV reliability performance is inferior to CRB and is very dependent on the
quality of its acceptance test stage.

c) In the case of medium to low version reliabilities, AV safety properties tend to be
better with than those of CRB under any voting strategy. However, when AV
acceptance test reliability is low, or version reliabilities are very high, AV may

perform worse than CRB. It usually remains safer than plain Recovery Block.

* The cost of Consensus Recovery Block (CRB), Recovery Block (RB) and
N-Version Programming was studied. Result indicate that unless the voter is
perfect, N-Version Programming does not compete cost-wise with the other
two methods. Given failure independence CRB is superior to RB.

The goal of the study was to study cost-effectiveness of more common fault-tolerance
strategies in situations where interversion failure correlation is negligible.

Accomplishments:

a) In the case of failure independence Consensus Recovery Block and Recovery Block
are the only cost justifiable fault-tolerant techniques to be considered. Unless the
voter is perfect, N-Version Programming does not compete cost-wise with the other
two methods.

b) However, the hybrid method Consensus Recovery Block which contains both
voting and recovery block can provide considerable reduction in cost for a given
system reliability over the other techniques.

* Papers and reports.

1. Athavale A., "Performance evaluation of hybrid voting schemes”, North Carolina
State University, Department of Computer Science, M.S. Thesis, December 1989.

2. M.A. Vouk, and D.F. McAllister, "Preliminary Report on Consensus Voting in the
Presence of Failure Correlation” in Software Reliability Through Fault-Avoidance and
Fault-Tolerance, NASA grant NAG-1-983 Progress Report #2 (9/1/89-3/31/90), 1990.

3. Vouk, M.A. and McAllister, D.F., "Software Reliability through Fault-Avoidance
and Fault-Tolerance", NAG-1-983 presentation, NASA-LaRC, Hampton, May 16,
1990.
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4. D.F. McAllister and R. Scott, "Cost Modeling of Fault Tolerant Sofiware",
Information and Software Technology, Vol 33 (8), pp 594-603, October 1991
(Appendix IV)

5. M.A. Vouk, D. F. McAllister, D.E. Eckhardt, and K. Kim, "An Empirical
Evaluation of Consensus Voting and Consensus Recovery Block Reliability in the
Presence of Failure Correlation,” submitted to the Special Issue of Journal of
Computer and Software Engineering, March 1992, (Appendix III)
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Appendix I

Summary of the Presentation Prepared for the
Workshop on Issues in Software Reliability Estimation
Purdue University, May 21, 1991

Software Reliability and Testing*

Miaden A. Vouk
North Carolina State University
Department of Computer Science

K.C. Tai
National Science Foundation
Washington, D.C.

* Research supported in part by NASA Grant No. NAG-1-983
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Introduction

Software testing, complexity and reliability are three software research subjects that have been
studied for some time. However, there appears to be a lack of study on the relationship among
these subjects. We feel that more research on this relationship is needed and that such research will
lead to significant results for increasing software quality. In the presentation we described a simple
model that relates the code coverage and the error removal process. The model was verified using a
set of functionally equivalent programs. We also offered a model that relates software reliability
and coverage. Its verification is in progress. The described models provide a strong argument in
favor of judicious use of different control and data-flow metrics during testing, but the results also
indicate that considerable caution and understanding is needed when interpreting attained coverage

values.

2. Software Complexity and Testing

A number of program complexity metrics have been defined and many of them are directly or
indirectly related to testing strategies. Below we show examples of the correspondence between
complexity metrics and testing strategies:

complexity metrics ‘ testing strategies
number of statements <=> statement testing
control-flow based metrics <=> control-flow based testing
data-flow based metrics <=> data-flow based testing

Currently it is not clear which metric(s) can best represent the complexity of a program, and indeed
is one single metric sufficient for this task. It is also not clear which testing strategy or strategies
are most effective for error detection. One consideration for the complexity of a program is how the
input domain of the program is partitioned. We are currently studying the relationship between the
conditions in a program and the partitions in the program'’s input domain. And we are using this
relationship as the theoretical basis for the condition testing approach.

3. Software Testing and Reliability

The reliability of a program is based on the results of testing. Existing reliability models can be are
based the use of random testing. The book Software Reliability by Musa, Iannino and Okumoto
include the following statements:

(1) ".., for accurate reliability measurement during test, select runs
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randomly with the same probability expected to occur in operation."
(2) "... that the input space must be well covered for accurate reliability
measurement.”

The major goal of research on non-random testing is to select tests that are effective for error
detection. The choice of a test criterion for a program affects the effectiveness of testing this
program and thus the reliability of this program. We have the following two hypotheses:

Hypothesis 1: If we apply a more effective testing strategy to test a program, then the resulting
program (after corrections have been made) is be more reliable.

Hypothesis 2: The reliability of a program is a function of the program's complexity, the test
criterion to be satisfied, and the errors detected during testing.

Existing reliability models, however, are not based on the above two hypotheses; they use random
testing for both the prediction and measurement of reliability. We feel that although the reliability
of a program is measured by using random testing, it could be predicted by using non-random
testing. Therefore the following questions arise:

(1) Is random testing as effective as non-random testing for error detection?
Should both random and non-random testing be used for error detection?

(2) How to predict the reliability of a program based on the results of non-
random testing (with or without random testing)?

For the first question, conflicting research results have been reported. The book by Musa et al.
mentioned the results of Curtis and Durant and concluded that random testing performs well with
respect to branch and path testing. However, our research results conflict with this conclusion.

4. Some S/W Testing and Reliability Research Issues Considered at NCSU

. Multi-dimensional View: Structure Based S/W Testing
- Metrics (e.g. Condition based testing, dud-chains, data and control-flow density)
- Error Removal and Reliability Models
- Random vs. Functional Testing



NASA/NAG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV ,DFM)/Mar-92 34

. Operational S/W Reliability and Availability
Commercial software with very large distribution (1,000 - 100,000 systems)
Early Identification of Operational Profiles

. Special Development and Testing Approaches

Parallel Component Testing (application of Markov chain models)
Back-to-Back Testing

Releases vs. Continuous Process

. Reliability of Software Fault-Tolerance Mechanisms

Hybrid models

5. Conclusion

We propose that the relationship among software testing, complexity and reliability be carefully
studied. This study is expected to produce useful results for improving the quality of computer
software. Some immediate research and development goals

. Investigate (in a quantitative terms) the place, role and value of structure based testing in the
software process.

. Provide theoretical foundation and experimental information on the costs and efficiency of
structure based testing and reliability growth monitoring

- for software quality forecasting
- test stopping criteria
- test direction criteria (diminishing returns, testing efficiency saturation)
- selection of error-sensitive test cases
- accelerated testing
. Tools

. Design for Testability and Reliability

|
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Some Research Issues
Considered at NCSU

e Multi-dimensional View:
Structure Based SI/W Testing

- Metrics
- Error Removal and Reliability Models
-  Random vs. Functional Testing

. Operational S/W Reliability
and Availability

. Commercial software with very large distribution
(1,000 - 100,000 systems)
- Early Identification of Operational Profiles

. Special Development and
Testing Approaches

- Parallel Component Testing (application of
Markov chain model)

- Back-to-Back Testing

- Releases vs. Continuous Process

« Reliability of Software
Fault-Tolerance Mechanisms
- Hybrid models
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Personnel

« NCSU Computer Science Faculty - Software
Systems

- Dr. Rance Cleaveland

-  Dr. David McAllister

- Dr. K.C. Tai (currently with NSF)
- Dr. Mladen Vouk

e Some current graduate students and their research
topics (Software Testing and Reliability)

* Mr. Young Choe (Ph.D.) - testing strategies of distributed
systems and protocols.

* Mr. Randy Cramp (Ph.D.) - software reliability,
availability, and testing strategies.

* Mr. Kim Kalhee (Ph.D.) - software reliability and testing,
back-to-back testing.

* Mr. Garrison Kenney (Ph.D.) - software reliability.

* Mr. Wayne Staats (Ph.D.) - data-flow analysis, structure
based testing, software errors.

* Mr. Robert Coyle (M.S. with thesis) - software structure
based testing tools.

* Mr. Dana Borger (M.S. with thesis) — software process
modeling, testing strategies and tools.

* Mr. Satya Vemulakonda (M.S. with thesis) — multiversion
failure correlation effects, errors and faults.

Other students, and researchers from other universities
and industry have been contributing through
participation in other projects and cooperative research
efforts.
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Overview

Structure Based S/W Testing

- New Metrics: Condition Testing (K.C. Tai),
DUD-chains, data and control flow density (M.

Vouk, K.C. Tai)

- Reliability Models: Error Removal and Reliability
Models (M. Vouk, K.C. Tai)

-  Testing Strategies: Random vs. Functional Test
Data (M. Vouk and K.C. Tai)
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Qperational S/W Reliability and
Availability

- Estimating Defects in Commercial Software
During Operational Use, G. Kenney (M.S.
Thesis, NCSU, 1991)

- Two commercial software systems were
investigates. One deployed at 10,000 and the
other at 100,000 hosts, no record of CPU time,
field reported defect count is the primary driver.

- A Weibull model appears to describe the process
quite well.

}vll —_ NaBt(B'l)e-atB

unique failure rate, total number of defects,

failure rate decay per system, system usage grow
Late.
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Special Development and Testing
Approachess A Custom-Designed

Reliability Model for a Stable Software
Testing Process

e Process & system (based on Work of Dr. C.
Wholin, University of Lund, Sweden, 1991

« YViolation of standard assumptions, lack of adequate
models.
- independence of failures
-  testing profile
- immediate correction
-  decreasing failure rate
-  testing load

* A more detailed Markov chain model is being
developed.
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Structure Based Testing:
Motivation

me (Testing) Problem

« Relating reliability to the overall software
development process, environment and participants
(developers, users, maintainers) - multidimensional
nature of the problem.

» A prescriptive, or proscriptive models.

« How reliable is the software: on release and in
operation?

« How robust is this reliability?
« What is the quality of testing? When to stop testing?

o Is testing process moving in the right direction? Is it
adequate?

» How to (cost-efficiently) choose error-sensitive test
cases?
etc.

« Problems are particularly acute for complex
software systems that need to be highly dependable.
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Some Possible Solutions

» Measure adequacy of the testing effort while it is
taking place. For example, functional and structural
coverage metrics.

» Measure software reliability growth and estimate
residual fault count. Test "exposure time'" in several
dimensions (e.g. CPU execution time, calendar
time, structural exXposure coverage).

* Guide testing by determining when diminishing
returns set in, and a change in strategy is required.

« Relate employed reliability models to the stability
of the development and testing process.

« Formulate prescriptive development and testing
models that guarantee certain lower bound on
reliability.
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Software Error Removal and Reliability
Modeling

o "Classical" Failure Intensity vs. Execution Time
based models are in current use in software
industry.

e They model the debugging process based on the
requirement that an operational profile be used.

« Some of the problems associated with such models
are S

-  Use of true operational profile may translate
into an inordinate number of test cases (time) to
test the system statistically.

- Operational profile may not be known.

-  Robustness of the estimates to changes in the
development and testing processes as well as
operational environment changes is usually not
considered.

- Accuracy, size of thelr predictive confidence
bounds.

- Inclusion into the models of the reliability of
re-usable components and combinations of
components developed at different sites with
under different conditions, etc.

- Incremental development, releases, etc.

o Alternative "exposure time" metrics, that would also
guide selection of test cases, may offer
complementary information and improve.
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yerage

» Coverage C(M,S) is computed for a construct
quantified through metric (M) and testing
strategy (S). -

C(M,S) = No. of executed constructs for M under S
’ — Total no. of executable constructs for M under S

« Examples of Unit Testing Oriented Control Flow
Metrics:
- Lines of Code (executable)
- Linear blocks of code
-  Branches
- Partial Paths (linear-code-and-jump, LCAJ)
-  Paths

« Examples of Unit Testing Oriented Data Flow
Metrics: |
- All definitions (in predicates and linear blocks)
- All uses (in predicates and linear blocks)
- All definition-use tuples
- All definition-use paths
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A typical hierarchy of control and data flow based
measures is the following one [Cla90]. The aim is to
indicate which of the criteria subsumes which other
criteria, and by implication which of the measures
may be superior as a practical complexity or
coverage measure.

Sheer number of paths does not necessarily qualify.
Even the simplest loop can result in an infinity of
paths.

All Paths

Ordered Context All DU-Paths Required k-Tuples

l ' '

All Uses Required 2-Tuples
Reach All P-Uses L
+ Some C-Uses All  P-Uses
All C-Uses
Some P-Uses v
All Defs All Branches

v
All Blocks
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Tools

« We have developed a tool (BGG) that handles static
and dynamic analysis of control and data flow
graphs (global, inter-, and intra-procedural data
flow) for program units written in full Pascal (unit
is considered to be about 4,000 lines of code).

Examples of computed static measures:
branches, paths, cyclomatic number,
definition-use (du) pair counts, count of
definition-use paths, average definition-use
path lengths, p-uses, c-uses, and all-uses.

Dynamic coverage is computed for definition-
use pairs, definition-use-redefinition chains,
p-uses, c-uses and all-uses.

The tool is used to analyze different sets of

programs.
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Some Motivating Results

» Increased code coverage brings about increased
fault-detection.

10 100.0%%
@ g - 90.0%%
- o
po ) o]
o )
- ]
6 > - 80.0%%
S 0
3
s ] S F70.0%%
E 0
= m
o
24 - 60.0%%
Program P9 - 786 Functional Test Cases
Total Number of Detected Faults: 14
o ' L] ¥ L] LD TTT] ¥ L | ] LELILILEN ] L] L] [] L LI 50.0%%
1 10 100 1000

Number of Test Cases

Growth of block coverage and of the number of detected
and corrected faults with the growth in the number of
executed functional test cases.
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« The coverage provided by random data is very
dependent on profile of the test data, and use of
extremal and special value test cases usually
provides a better results and detects more faults.

Functional
Program P9

95 4 g \/._____.__‘. R
_— . 4 . 4 L
°\° o
o
) 85 4 " o) —_
S
E Non-uniform Random
o

75 - -
O
x o
g Uniform Random
m 65- p

55 —r—r—r—r—rrr . A S —

1 10 100 1000

Number of Test Cases

Comparison of linear block coverage observed for two
random testing profiles and a functional data set with a
Pascal program.
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« There appears to be considerable variability in the
meaning a given coverage C for metric M caries
over a population of functionally equivalent
programs |

« For instance, the same set of test cases may not
provide the same level of coverage over all
functionally equivalent software, and that for
exactly the same test data sets coverage could vary
as much as 22% across the population of
functionally equivalent programs.

 All indications are

- that coverage has very limited meaning as a
stand alone measure,

- that coverage '"exposure" should be directly
associated with software reliability (quality)
growth, and ,

- that appropriate models relating development
and testing strategies, coverage, and reliability
need to be investigated.

» Several structure based testing error removal
models are under investigation.

. A two-dimensional structure and time based
reliability model is under development.

« Results are encouraging, but confirm that

considerable caution is needed in the interpretation
of coverage measures.
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Structure Based Testing:
Some Immediate Goals

« Investigate (in a quantitative terms) the place, role
and value of structure based testing in the software
process.

 Provide theoretical foundation and experimental
information on the costs and efficiency of structure
based testing and reliability growth monitoring
-  for software quality forecasting
-  test stopping criteria

- test direction criteria (diminishing returns,
testing efficiency saturation)

- selection of error-sensitive test cases

accelerated testing
« Tools

« Design for Testability and Reliability
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Structure Based Testing:
Error Removal Models

Rayleigh Model
Exponential Model
Linear Model
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« Some simplified assumptions about the coverage
based testing and fault removal process:

(1)

(2)

(3)

Coverage based testing and fault removal, in
the first approximation, is equivalent to
sampling without replacement.

As the result: fault detection rate is
proportional to the coverage, 1> C(M,S) > 0.

To increase (fulfill) coverage we generate test
cases which would cover as many yet
uncovered constructs as possible. "Re-use" of
constructs through new paths that exercise as at
least one new construct is "ignored" by the
metric M.

Order of execution of test cases is ignored (and
is assumed random) unless otherwise dictated
by the testing strategy S.

The rate of fault detection is proportional to the

number (or density) of residual faults, &,
detectable by metric M under strategy S.

For each test set T generated under S and
monitored through M, there is a minimal
coverage and maximal coverage achievable.
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M-space of program P

Exit

LN

Entry

. As the number of unexecuted M constructs shrinks
the probability increases of '"trapping" a
M-detectable fault that remains.

« Each fault, X, has associated with it probability
p(M,S,X) that it is detectable by M under S. So

Er
er = 2 p(M,S,X)
i=

where E; is the actual number of faults remaining.

«  The number of faults (initial, detected, remaining,
etc) could be normalized over the total number of
M constructs in program P (density).
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Probability of Detecting X by M under S

if(A>7)
B =1 B =-2
(instead of B = 2)
if (D<2)
C = A*4 C=8B+3

« Strategy: Cover all branches at least once.

« Full branch coverage can be achieved in many
ways. For example via paths:

(1-2-4-5-7, 1-3-4-6-7), or (1-2-4-6-7, 1-2-4-5-7),
or (1-2-4-5-7, 1-2-4-6-7, 1-3-4-5-7), etc.

« Only some of these path combinations detect the
error.
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The fault detection rate with respect to coverage is

deg
a'E:kerC

where €4 is the number (or density) of detected
faults, and C is C(M,S). i

* Under a simplifying assumption that fault
correction is instantaneous and perfect (i.e., no

fault generation, £¢g = 0), the number of corrected
faults, ¢, is equal to number of detect faults.

*  Number (or density) of residual faults is
€r = €T - €c
where €1 1is the total (effective) number of
(M-detectable) faults in program P at coverage
C=0.

. Hence

de
aﬁ:k(eT-ec)c
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* Solution of this differential equation in the range
0<Cx< 1, and initial condition g¢ = 0 for C £ Cmin

dee  _rcdC
(€T - €¢)
yields
€c 1
In(1 - —) = ) k (C2 - Cnin2)
€T
or

€¢ = €1[1 - e-B(C2-Cmin?)]

« This is a variant of the Rayleigh distribution, i.e. a
special case of the Weibull distribution.
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Examples of Experimental Results

10
Program P3 - 1196 Test Cases
Total Number of Faults Detected is 9
Q87 -
5 DUD-chains
©
o I
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> branches
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3
£
3 2 _
0 v 1 ] ¥ ] v 4 v T
0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Coverage (%)
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Direct Fit of ec = £1[1 - e-B(C2-Cmin?)]

NCSUC - 1196 Certification Test Cases
(Total number of detected faults Is 9)
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Power of Coverage Metrics

€c(C=1
_9(_____)_ < 1- Q'B(l'czmin)
€T

Program P3
(Total Number of Faults Iis 9)

Blocks

9))

in(1-(Ec/Et

0.0 0.2 0.4 0.6 0.8

c**2 - Cmin**2

«  The sharper the slope, B, and the smaller Cmin, the

higher is the potential of the metric in detecting
faults.

Block : p-use : DUD-chains = 1: 2 : 6
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Fault Detection Properties of Random
and Functional Testing

330

« In our experiments most of the time random data
showed poorer overall fault detection properties
than functional data. However, random testing did
uncover a certain number of faults not detected by
functional testing.

Fault Type
Test Set Dissimilar Similar Total
Random+ESV-I 54 7 61
Random 48 2 50
ESV 48 7 55
Random but not ESV 6 0 6
ESV but not Random 6 5 11

The number of faults detected by ESV and 500 RANDOM-Ib cases.
Actual Program 400 ESV-I 500 RANDOM-Ib _ Total
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Coverage by Random and Functional

Coverage (%)

Testing

331

Our experiments show that as many as 40% of the

branches could be missed by random test data.

definition-use pairs  ~_

80 o ° ° o———
oo *—0 * .- -* * > ——9
70 " linear blocks
branches
60 — s 5 5 5 "
50 A .
: Efficiency of Random Testing
40 (6-Version Set: Program L17.3)
30 ] ——r—rrrry —rTr
109 10! 102 103
Number of Test Cases

Coverage observed during random testing of a program

from the 6-version set.
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Work in Progress and Future Work
Coverage Based Reliability Models

« Failure Intensity Vs. Covered (tested) program
functions or sub-functions.

Block Coverage

rd

Branch Coverage

P
aal

UCLAD - Failure Intensity vs Coverag
796 ESV-l Test Cases

[=]
-
1

Failure Intensity (Failures/Total Cases)

.001 v 1] d 1 v 1 A | § v 1 v |1} A | L4 | . | L]
0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%
Coverage (%)

.  Function based reliability models.

. How to measure the extent of function synthesis
provided by test cases?
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e One possibility is a combination of the code
structure based metrics (control flow, data flow,
hybrid) with testing time exposure to capture both
the test quality and the reliability growth.

«  Work on formulation of a two component (coverage,
time) reliability models is in progress.

NCSUC - Failure Intensity vs Coveragp
796 ESV-| Test Cases

Block Coverage
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_ Appendix II:
Extensions to the BGG Testing Coverage Tool

Abstract

BGG, Basic Graph Generation and Analysis tool, was originally developed to help studies of static
and dynamic software complexity, and testing coverage metrics. It is composed of several stand-
alone modules, it runs in UNIX environment, and currently handles static and dynamic analysis of
control and data flow graphs (global, intra-, and inter-procedural data flow) for programs written in
full Pascal. We describe additions to the structure of BGG in the form of the facility to generate and
analyze reduced data-flow graphs, and the facility to perform Boolean and Relational Operator
(BRO) testing analyis. Condition based testing focuses the testing process on predicates in a
program. A new condition testing strategy called BRO testing was developed by Tai. To guide the
test generation for BRO testing, an algorithm developed by Tai was incorporated into BGG. We are
in the process of using the tool to collect data on the relationship between the software errors
discovered in RSDIMU software and the BRO coverage achieved during RSDIMU testing.

I. Introduction

The system, BGG (Basic Graph Generation and Analysis system), was built as a research tool to
help understand, study, and evaluate the many software complexity and testing metrics that have
been proposed as aids in producing better quality software in an economical way [Appendix A].
BGG allows comparison of coverage metrics and evaluation of complexity metrics. It can also
serve as a support tool for planning of testing strategies (e.g. stopping criteria), as well as for
active monitoring of the testing process and its quality in terms of the coverage provided by the test
cases used. It has now been extended with data-flow graphing analysis capabilities and with new
structure based metrics for Boolean and Relational Operator (BRO) testing [Tai90] capabilities.
Both will be used in the research on software desing testability. Section II of the report provides an
overview of the data-flow additions to BGG. Section III gives a brief overview fo the BRO theory
and some details concerning the implementation of the metric in the BGG context. Section IV
illustrates some of the tool capabilities through examples. A brief description of the tool and its
current "man" pages are shown in Appendix I of this report.

II. Data-flow extensions

Originally, BGG was written for control flow graph analyses with data flow computations based
on the control-flow graph information for all variables in a given program. In a control flow graph
the nodes represent the basic blocks and the arcs represent possible threads of execution, where a
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basic block is defined to be a series of statements without branching. Each conditional statement
is considered its own basic block that has multiple target blocks which are determined at runtime.

The methodology used by BGC is to first build control flow graphs for each of the procedures of a
given program. Each node of the graph indicates which variables were assigned (defined) a value
or were used in the calculation of another variable. From these graphs, the data flow is calculated.
The information calcuated includes definition-use (du) pairs, definition-use-defintion (dud's)
triplets, p-uses, and c-uses.

The problem with this methodology was that for most variables not all nodes or paths of the
control flow graph are relative. That is, for a given variable, entire sections of the graph would not
contain either a definition or use of that variable, however, the algorithm used in bgc required that
all possible paths be explored. This exhaustive search is necessary but very time consuming.

To help reduce the time required to analyze a program, the control flow graph for each variable is
first reduced to a data flow graph before analysis is performed. A data flow graph is one where
only the nodes that contain either a definition or use a variable remain. This transformation,
therefore, removes all unnecessary nodes and arcs from the graph, reducing the overall size.

This facility is available as a separate option on invocation of BGG (see Appendices A and
Appendix B of this paper).

III. BRO Extensions

Boolean and Relation Operator testing focuses on the detection of Boolean and relational operator
errors in a condition. An algorithm for selection of a minimum set ot testing constraints is
described in [Tai90]. A minimum set of testing conditions consists of two sets of tests, min_t, or
the smallest adequate set that makes the expression true, and min_f, or the smallest set that makes
the expression false. BRO algorithms has been incorporated in a special version 1 of BGG. Both the - -
algorithms and the metric are still under study. The foIlowmg examplc illustrates the algoﬁthm.

The following describes the steps in the calculation of a BRO set for the expression
"(x<0)and (y > 0) or (x < Y)". Braces {} denote a set, and each element of the set is a
relational operator. The true and false sets calculated by our program written to automate the
process of computation onf min_t and min_f sets are:
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The BRO set is the combination of the min_t and min_f sets. Note that min_t are the test cases
that make the expression true and the min_f make it false. This set is only one of many possible
sets that could be formed for the same expression. The following description clearifies how the
numerous sets could be formed.

The first step in calculating the BRO set is to form the min_t and min_f for the various
subexpression. A bottom-up parse is used to ensure that proper presidence and grouping is
maintained. The min_t and min_f for a minimal subexpression are:

X >y —_ min_t = { (>) } min_f = { (=) ’ {<) }
X =y - min t = { (=) } min_f = { (),{>) }
X -- min_t = { (T) } min_f = { (F) }

For the expression mentioned above, the algorithm starts by generating the min_t and min_f for the
first subexpression , "(x < 0)", and places them on two separaie stacks, one for each of the
minimal sets. As the expression is read, the boolean bpératbr "and" is remembered for processing
after the min sets for the second subexpression have been determined and placed on the
appropriate stacks.

The stacks would appear as follows: 7
min t(y > 0) = { () } min f(y > 0) = { (=),(<) } (tos)
min t(x < 0) = { () } min f(x < 0) = { (=), (>) }

true stack ~ false stack

The next is to combine the two entries on the stack to produce a single set which will represent the
subexpression "(x < 0) and (y > 0)". To produce the min_t of this "and" subexpression, the two
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min_t sets are combined using the onto function described in [1]. The resulting set is constructed
such that each eleirent of both sets must appear at least once in the final set. For our example, the
combination is trivial in that the resulting set is { (<,>) }. This set will make the sub expression
true.

Calculating the min_f is a little trickier. From the min_t of the combined subexpression, choose
two different members unless there is only one as in our case. Replace the left most operator with
a member of the left subexpression’s min_f(x < 0) to make the entire subexpression false. Repeat
for all elements in the min_f. With the second element choosen from the resulting min_t, replace
the second operator with the elements of the right most's min_f. The resulting stacks are:

true stack

min £((x < 0) and (y > 0) = { (=,>), (>,>),
(<,=), (<,<) }

false stack

What is actually happening here is that from the element(s) chosen from the min_t, we are holding
one of the subexpression true and forcing the other to be false by using the min_f sets from the two
subexpression. The next step is to hold the other subexpression true while making the other one
false. From this algorithm, there is no way that a set element of (=,=) could be generated for any
BRO set.

Once calculated, the next boolean operator is observed and stored for processing once another
subexpression has been completed. In our example, the subexpresion (x < y) is encountered and
the appropriate min sets are placed on the stack. Now the processing of the "OR" boolean
operator is just opposite of the "AND" in that the two min_f sets are combined using the onto
function and the elements of the two min_t currently on the stack are combined with two different
elements from the resulting min_f.

So, before processing the stacks are :

min t(x < y) = { (<)}
min_t((x < 0) and (y > 0) = { (<,>) }

true stack
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min f(x < y) =
min_f£((x < 0) and (y > 0) = { (>,>)r (=£>)

_————_—_——_.___—__——..-————__—.-.._-.-_—.——

false stack

The onto funtion states that each element of both sets must appear at least one time in the resulting
set. Our strategy was based on linked list. Each element in a the set was a node in the linked list.
The first element of each list were combined, the second element, and so forth until one list was
exhausted. When this happened the last element of that list is combined with the remaining
elements from the other list. The resulting min_f = { &> =>>) (<,<>), (<=>) }.

Now, to calculate the min_t, two independent clements of the min_f set are selected. The
algorithm used selects (<,<,>) and (<,=,>) but the choices are arbitray. The three members of
these two elements represent the conditions which will make the entire expression false. Now, the
theory replaces one of the subexpressions with a condition which will make that subexpression
true, resulting in the entire expression being true (since we are or'ing the subexpressions). The left
subexpression ((x <0) and (y > 0)) can be made true by replacing the first two members of either
but not both elements with the min_t for that subexpresion, which is (<,>). The resulting element
is (<,>>)-

The element not chosen above is combined with the min_t of the subexpression (x < y) with the
rightmost member being replaced. This will produce an element (<,<<). As mentioned, the
union of the min_t and min_f are the BRO set for this expression. Although this is a BRO set, the
selection algorithm can produced different BRO set. Even the ordering of the element members
can produce different BRO set.

To date, we have implemented the production of a single BRO set. After statically calculating this
set, the code is instrumented in such a manner that at runtime the BRO set elements can be match if
they are executed. The implemention was interesting for a couple of reasons. First, the theory is
type independent but the implementation was not able to be. That is, in pascal, variables of
pointer or boolean type may be compared to determine equality/ inequality, but not greater Or less
than. This caused problem since variable types are not considered by the tool and the selection of
the min_t and min_f set for the inequality operator does not then hold for variables of this type.

“The other problem had to do with handling the various language construct. The theory does not
provide min sets for the "for loop” or case statement. In these cases, we chose to handle the for
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loop as the expression x <= upper bound or x >= lower bound depending if x in increment or
decremented. For the case statement, we chose to handle it as a series of x = value with the each
case statement having a new block number. This criteria produces only branch coverage but no
better. '

Our future work will be to extend the current tool to calculate all possible BRO set for a given
expression. Once calculated and statistics generated, a comparison of the coverage provided by the
BRO sets will be performed. We are interested in determining if a particular bro set "out performs”
another in providing better code coverage and is there a selection criteria that can be generalized. A
second issue we wish to examine is the inequality operator and its relationship to the bro set.
Here, we wish to use the min sets of min_t = { (<>) } and min_f = { (=) } and compare the results
to the current usage. If we find that the min sets must be as described by [Tai90], then type
information will need to be used in the implementation of BRO.

[Tai90] K.C. Tai, "Theory of Condition-Based Software Testing", NCSU Computer Science
Technical Report, TR-90-11 (September 91 revision)
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Section Appendix A
BGG: A Testing Coverage Tool'

Mladen A. Vouk, Robert. E. Coyle?, Dana Borger

North Carolina State University
Department of Computer Science, Box 8206
Raleigh, N.C. 27695-8206

Extended Abstract

The system, BGG (Basic Graph Generation and Analysis system), was built as a research and
teaching tool to help understand, study, and evaluate the many software complexity and testing
metrics that have been proposed as aids in producing better quality software in an economical way.
BGG allows comparison of coverage metrics and evaluation of complexity mctncs It can also
serve as a support tool for planning of testing strategies (e.g. stopping cntena) as well as for
active monitoring of the testing process and its quality in terms of the coverage provided by the test
cases used.

A simplified top level diagram of BGG is shown in Figure 1. BGG is composed of several
modules which can be used as an integrated system, or individually given appropriate inputs, to
perform static and dynamic analyses of local and global control and data flow in programs written
in Pascal. The UNIX version of the tool currently handles full Berkeley Pascal, while the PC
version accepts Turbo Pascal. Extension to C is planned. UNIX version of BGG is itself written in
Pascal, C and UNIX C-shell script, while PC version is written in Turbo Pascal.

BGG pre-processor provides the user interface when the tool is used as an integrated system. It
also performs some housekeeping chores (checks for file existence, initializes appropnatc language
tables and files, etc.), and prepares the code for processing by formamng it and stripping it of
comments. The language tables are generated for the system once, during the system installation,
and then stored. The front-end parsing is handled through the FMQ generator [Fis88]. This facility
also allows for relatively simple customization of the system regarding different programming
languages and language features. Also, each of the BGG modules has a set of parameters which

1Research supported in part by NASA Grant No. NAG-1-983
2Teletec Corporation, Raleigh, N.C.



NASA/N AG-1-983/Semi-Annual Reports No. 5.0&6.0/NCSU.CSC.(MAV,DFM)/Mar-92 4-8

can be adjusted to allow analyses of problems which may exceed the default values for the number
of nodes, identifier lengths, nesting depth, table sizes, etc.

BAQ-preprooessor

Terminal

=

raa-8tetla

Source
Code
Flle

Language
Tables (FMQ)

saa-Dynamio

Dynamic
Coverage

Test Data Analysis

Figure 1. Schematic diagram of the information flow in the BGG system of tools.

Pre-processed code, various control information and language tables are used as input to the
BGG-Static processor. This processor constructs control and data-flow graphs, and performs
static analysis of the code. These graphs are the basis for all further analyses. Statistics on various
metrics and control-flow and data-flow anomalies, such as variables that are used but never defined
etc, are reported. BGG-Static also instruments the code for dynamic execution tracing. - —=: smnia

When requested; BGG executes the instrumented code with provided test cases and analyzes its
dynamic execution trace through BGG-Dynamic. The dynamic analysis output contains
information (by proéedurcs and variables) about the coverage that the test cases provide under
different metrics.

When instrumenting code BGG inserts a call to a special BGG procedure at the beginning of each

linear code block. It also adds empty blocks to act as collection points for branches. The
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instrumentation overhead in executable statements is roughly proportional to the number of linear
blocks present in the code. In our experience this can add between 50% and 80% to the number of
executable lines of code. The run-time tracing overhead for the instrumented programs is
proportional to the number of linear blocks of code times the cost of the call to the BGG tracing
procedure. The latter simply outputs information about the block and the procedure being executed.

The raw run-time tracing information may be stored in temporary files, and processed by
BGG-Dynamic later. However, often the amount of raw tracing information is so large that that it
becomes impractical to store it. BGG-Dynamic can then accept input via a pipe and process it on-
the-fly. Because BGG-Dynamic analyses may be very I/O, memory and CPU intensive,
particularly in the case of data-flow metrics, interactive testing may be a slow process. Part of the
problem lies in the fact that BGG is still a research tool and was not optimized. We expect that the
next version of BGG will be much faster and more conservative in its use of memory. It will
permit splicing of information from several short independent runs, so that progressive coverage
can be computed without regression runs on already executed data.

Currently BGG computes the following static measures: counts of local and global symbols, lines
of code (with and without comments), total lines in executable control graph nodes, linear blocks
of code, control graph edges and graph nodes, branches, decision points, paths (the maximum
number of iterations through loops can be set by the user), cyclomatic number, definition and use
counts for each variable, definition-use (du) pair counts, definition-use-redefinition (dud) chain
counts, count of definition-use paths, average definition-use path lengths, p-uses, c-uses, and all-
uses. Dynamic coverage is computed for definition-use pairs, definition-use-redefinition chains,
p-uses, c-uses and all-uses [Fra88]. Definition-use path coverage and path coverage for paths that
iterate loops k times (where k can be set by user) will be implemented [Nta88]. There are several
system switches which allow selective display and printing of the results of the analyses.

Outputs like the one shown in Figure 2 provide summary profile of each local and global symbol
found in the code. How many times it was defined (or pseudo-defined), used (or pseudo-used),
how many du-pairs it forms, how many d(u)d chains, etc. This static information can be used to
judge the complexity of procedures, or the complexity of the use of individual variables. In turn,
this information may help in deciding which of the variables and procedures need additional
attention on the part of the programmers and testers.

BGG provides coverage information on the program lével, and on the procedure level. Figure 3
illustrates output from the dynamic coverage processor "BGG-Dynamic”, delivered in the
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"Dynamic Coverage Analysis" output file, for a function called FPTRUNC and a set of 103 test
cases. In the example some of the output information normally delivered by BGG has been turned
off, e.g. all-uses.

For each procedure BGG-Dynamic first outputs a summary of branch coverage information: the
block number, statement numbers encompassed by the block, the number of times the block was
executed, and the execution paths taken from the block (node). For example, node 5 in Figure 7
was executed 724 times, 6 times to node 3, and 721 times to node 7. Branches which have not
been executed show up as having zero executions.

The branch table is followed by a summary of coverage by metrics: coverage for non-empty blocks
(blocks that have not been inserted by BGG), lines of code within executable nodes, and branch
coverage. This is followed by coverage for data flow metrics by symbol name. The static
definition, use, du-pair, d(u)d, p-use, etc. counts for a variable are printed along with the
information on its the dynamic coverage expressed as percentage of the executed static constructs.
For each identifier, this is followed by a detailed list and description of constructs that have not
been executed (e.g. du-pairs or p-uses). Execution coverage output tables can be printed in
different formats (e.g. counts of executed constructs, rather than percentages), and with different
content (e.g. all-uses).

Apart from providing static information on the code complexity, and dynamic information on the
quality of test data in terms of a particular metric, BGG can also be used to determine the point of
diminishing returns for a given data set though coverage growth curves, and help in making the
decisions on when to switch to another testing profile or strategy. We are currently using BGG in
an attempt to formulate coverage based software reliability models by relating code complexity,
testing quality (expressed through coverage), and the number of faults that have been discovered in
the code. BGG is also an excellent teaching tool, and is used in the Software Engineering and the
Software Testing and Reliability courses taught at North Carolina State University, Department of
Computer Science.

[Fis88] C.N. Fisher and R.J. LeBlanc, Crafting a compiler, The Benjamin/Cummings Co.,
1988.

[Fra88] P.G. Frankl and E.J. Weyuker, "An applicable family of data flow testing criteria,"
IEEE Trans. Soft. Eng., Vol. 14 (10), pp 1483-1498, 1988.

[Nta88] S.C. Ntafos, "A Comparison of Some Structural Testing Strategies”, IEEE Trans.
Soft. Eng., Vol. SE-14 (6), pp 868-874, 1988.
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_ Appendix B

VAX bgg (se)
NAME
bgg = performs static and dynamic analysis (execution coverage) of
Pascal code.
SYNTAX

bgg file name.p [up to two options]

DESCRIPTION
The bgg command compiles and performs static and dynamic analysis of
Pascal code using a number of metrics.

This version of bgg is generated for analysls of Berkeley Pascal or its
subset.

Analysis can be performed using program control graph or data-flow graphs
for individual variables. Analysis is performed for global, inter- and
intra-procedural control and data flow. A summary is also provided for
the whole program.

Some of the active static metrics are: statement, line, & comment counts,
cyclomatic number, branch, definition-use pair and path count.

Some of the active dynamic coverage metrics are: statement, branch
definition—-use pair, p-uses, and c—uses coverage.

To get more help on execution options type: bgg -h

More coamplete documentation is available in the form of users manual and
a paper describing the tool.

It is possible to customize the bgg driver to access some analysis
options which are not available in the default mode.

OPTIONS
There are four processors that can be controlled: bgg-shell,
bgg-bgc the graph generator, bgg-static the static analyzer, and

bgg—dynamic the dynamic analyzer.
** bgg-shell options:

bgg-shell runs bgc, bgg-static and bgg—dynamic in default modes unless
otherwise is specified through options.

default option: graph generation only
* file name.p file must be available

other options: —-x generate graph, static, and dynamic analysis
* file name.p file must be available
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-s static analysis only
* all graph files must be available
—~d dynamic analysis only
* file name.p.probe file must be available
* all graph files must be available
-a static and dynamic analysis only
* file name.p.prcbe file must be available
* all graph files must be available
-r both static and dynamic analysis is
performed on reduced (data-flow) graphs
-h help (this screen)
warning: filenames "tables", "llgenout™, "bgctables"™ are reserved names
and will be deleted if they exist in the current directory

** bgg-bgc options:

* %

usage: bgc [options]

required file: tables, llgenout test.p or option -f

default: all -pxxx options are on.

options: -v print version and stop
-prdef turn off analysis of predefined functions
-ppdef turn off analysis of parameter pseudo—definitions
-ppuse turn off analysis of parameter pseudo-uses
-pgdef turn off analysis of global pseudo—definitions
-pguse turn off analysis of global pseudo—-uses
—-pcdef turn off analysis of constant pseudo—definitions
-f fname.p, where fname.p is source code
-h help (this screen)

bgg-static options:

usage: dustatic [options] < bgctables
required file: bgctables as standard input

default: control-flow analysis, iteration depth is one
options: -r for analysis use reduced graph; default: full control
graph )
-v  print program version only
-1 xx
set depth of loop iteration to xx; default is 1
-p fname

fname contains list of procedures or functions
by their ordinal number, one a line, which are NOT
to be processed during static analysis;
default is to process all procedures/functions
-h  help (this screen

** bgg-dynamic options:

usage: dudynamic [options]

required files: probe, bgctables

default: control-flow analysis

options: -r for analysis use reduced graph
-v  print program version only
-h  help (this screen
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BUGS

This is a field testing release of bgg. Please remember that

bgg is a research and teaching tool still under development.

It contains same bugs we know about, and probably many we do not
know about. So exercise care and check the results for consistency
and sense.

Please report all anamalies to

vouk@adm.csc.ncsu.edu
bgg will only take complete programs which do not take input directly
from the keyboard and output drectly to the screeen. All I/O has to be
indirect (via files).
bgg programs must have the (input,output) part.

Under VAX Ultrix bgg is very slow, so be patient. To start with, analyze
only very small code. Code to be analyzed must be a camplete program.
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Appendix III:
An Empirical Evaluation of Consensus Voting and
Consensus Recovery Block Reliability in the Presence of
Failure Correlation*

(submitted to the Special Issue of Journal of Computer and Software Engineering, March 1992)
Mladen A. Vouk3,David F. McAllister!, David E. Eckhardt4, Kalhee Kim!

Abstract

Reliability of fault-tolerant software system implementations based on Consensus Voting and
Consensus Recovery Block strategies is evaluated using a set of independently developed
functionally equivalent versions of an avionics application. The strategies are studied under
conditions of high inter-version failure correlation and with program versions of medium-to-high
reliability. Comparisons are made with classical N-Version Programming that uses Majority Voting,
and with Recovery Block strategies. The empirical behavior of the three schemes is found to be in
good agreement with theoretical analyses and expectations. Consensus Voting and Consensus
Recovery Block based systems are found to perform better and more uniformly than corresponding
traditional strategies, i.e. Recovery Block and N-Version Programming that uses Majority Voting.
This is the first experimental evaluation of the system reliability provided by Consensus Voting, and
the first experimental study of the reliability of Consensus Recovery Block systems composed of
more than three versions.

Key Words: Consensus Recovery Block, Consensus Voting, System Reliability, Software
Fault-Tolerance, Correlated Failures

1. Introduction

Redundancy can be used to provide fault-tolerance in software systems. Several independently
developed but functionally equivalent software versions are combined in various ways in an attempt
to increase system reliability. Over the years simple majority voting and recovery block based
software fault-tolerance has been investigated by a number of researchers, both theoretically [e.g.,
Ran75, Avi77, Grn80, Eck85, Sco87, Deb88, Lit90] and experimentally [e.g., Sco84a,84b, Bis86,
Kni86, Shi88, Eck91]. However, studies of more advanced models such as Consensus Recovery
Block [e.g. Sco84a, Sco87, Deb88, Bel90], Community Error Recovery [e.g. Tso86, 87, Nic90],
Consensus Voting [McA90] or Acceptance Voting [Ath89, Bel90] are less frequent and mostly
theoretical in nature. One of the principal concerns with all redundancy based software fault-tolerance

*Research supported in part by NASA Grant No. NAG-1-983
3Department of Computer Science, North Carolina State University, Box 8206, Raleigh, NC 27695-8206
4NASA Langley Research Center, MS 478, Hampton, VA 23665
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strategies is their performance in the presence of failure correlation among the versions comprising
the system. '

In a recent study Eckhardt et al. [Eck91] addressed the issue of reliability gains offered through
classical majority-based N-Version Programming using high reliability versions of an avionics
application under conditions of small-to-moderate inter-version failure dependence. In this paper we
discuss system reliability performance offered by more advanced fault-tolerance mechanisms under
more severe conditions. The primary goal of the present work is mutual comparison of different
experimental implementations of Consensus Recovery Block in the presence of inter-version failure
correlation, and a comparison of Consensus Voting and Consensus Recovery Block with more
traditional schemes such as N-Version Programming with Majority Voting. We report on the relative
‘reliability performance of Consensus /oting and Consensus Recovery Block in an environment
where theoretically expected effects could be easily observed, i.e., under the conditions of strong
inter-version failure coupling using medium-to-high reliability software versions of the same
avionics application as was employed in [Eck91]. To the best of our knowledge this study is the first
experimental evaluation of the Consensus Voting techniques, and the first experimental study of the
reliability of Consensus Recovery Block systems composed of more than three versions

in section 2 we discuss different voting approaches and the question of correlated failures, in section
3 we describe the experimental environment and present the results. Summary and conclusions are
given in section 4.

1.1 Recovery Block and N-Version Programming

One of the earliest fault-tolerant software schemes is Recovery Block [e.g., Ran75, Deb86]. In
Recover Block independently developed functionally equivalent versions are executed in sequence
and the output is passed to an acceptance test. If the output of the first version fails the acceptance
test, then the second, or first backup, software version is executed and its output is checked by the
acceptance test, etc. In the case where the outputs of all versions are rejected the system fails. One
problem with this strategy is the sequential nature of the execution of versions. This was recently
addressed by [Bel91]. Another is finding a simple and highly reliable acceptance test which does not
involve the development of an additional software version. Another basic fault-tolerant software
strategy, N-version Programming [e.g., Avi77, Avi85], proposes parallel execution of
independently developed functionally equivalent versions with adjudication of their outputs by a
voter. One problem with all strategies based on voting is that situations can arise where there is an
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insufficient number of agreeing versions and voting fails simply because the voter cannot make a
decision.

1.2 Consensus Recovery Block

Scot et al. [Sco87] developed a hybrid software fault-tolerance model called Consensus
Recovery Block. The system executes independently developed functionally equivalent versions
on the same input in series or parallel. Then it attempts to vote on the returned results. If the voting
module cannot make a decision, the system reverts to Recovery Block. The strategy is depicted in
Figure 1, where the number of versions in the system is N, 1 - a is the probability that a version
gives correct result, B is the probability that acceptance test rgjects a correct result, B2 is the
probability that acceptance test accepts an incorrect result. In general, Consensus Recovery Block
offers system reliability superior to that provided by N-Version Programming [Sco87, Bel90].
However, Consensus Recovery Block, like N-Version Programming does not resolve the problem
of a voter which returns a wrong answer because several versions produce identical-and-wrong
answers or there is not a majority as might be the case when there are multiple correct outputs.

1

L N
Verslon: 1

« correct result
wrong result 1—ct

cannot decide
(all results to acceptance test)

accept
(success: correct result
fallure: wrong result)
l_ﬁl 1_32
success

(accept correct reject wrong resuit

result)

errors
reject correct result B,

accept wrong result B,

Figure 1. Consensus Recovery Block model.
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2. Adjudication Strategies

2.1 Majority and 2-out-of-N Voting

In an m-out-of-N fault-tolerant software system the number of versions is N, and m is the agreement
number, or the number of matching outputs which the adjudication algorithm (e.g. voting) requires
for system success [e.g. Tri82, Eck85]. In the past N was rarely larger than 3, and m was
traditionally chosen as%ﬂ for odd m. In general, in Majority Voting, m = f%—h, where [ |

denotes the ceiling function. Scott et al. [Sco87] showed that, if the output space is large, and true
statistical independence of version failures can be assumed, there is no need to choose m > 2
regardless of the size of N, although larger m values offer additional benefits. We use the term
2-out-of-N Voting for the case where agreement number is m=2, In this experiment we do not
have statistical independence of version failures. Hence, this voting technique is used only when
showing upperbounds for reliabilities of the systems. In a model based on software diversity and a
voting strategy there is a difference between correctness and agreement. McAllister et al. [McA90]
distinguish between agreement and correctness and develop and evaluate an adaptive voting strategy
called Consensus Voting. This strategy is particularly effective in small output spaces because it
automatically adjusts the voting to the changes in the effective output space cardinality. They show
that for m>2 the majority voting strategy provides lowerbound on the reliability provided by
Consensus Voting, and 2-out-of-N upperbound .

2.2 Consensus Voting
The theory of Consensus Voting is given in [McA90]. In Consensus Voting the voter uses the
following algorithm to select the "correct” answer:

- If there is a majority agreement (m 2 f%] , N>1) then this answer is chosen as the " correct”
answer.

- Otherwise, if there is a unique maximum agreement, but this number of agreeing versions is less

than rNTH-L then this answer is chosen as the "correct” one.

- Otherwise, if there is a tie in the maximum agreement number from several output groups then
- if Consensus Voting is used in N-Version Programming one group is chosen at random and
the answer associated with this group is chosen as the "correct” one.
- else if Consensus Voting is used in Consensus Recovery Block all groups are subjected to an
acceptance test which is then used to choose the "correct” output.

In [McA90] it is shown that the strategy is equivalent to Majority Voting when the output space
cardinality is 2, and to 2-out-of-N voting when the output space cardinality tends to infinity provided
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the agreement nuber is not less than 2. It is also proved that, in general, the boundary probability
below which the system reliability begins to deteriorate as more versions are added is —:—, where 1 is

the cardinality of the output space.

2.3 Coincident Failures and Inter-Version Failure Correlation

When two or more functionally equivalent software components fail on the same input case we say
that a coincident failure has occurred. When two or more versions give the same incorrect response,
to a given tolerance, we say that an identical-and-wrong answer was obtained. If measured
probability of the coincident version failures is significantly different from what would be expected
by chance, assuming failure independence model, then we say that the observed version failures are
correlated or dependent [Tri82, Eck85, Lit90].

Experiments have shown that inter-version failure dependence among independently developed
functionally equivalent versions may not be negligible in the context of current software dévelopment
and testing strategies [e.g., Sco84a, Kni86, Eck91]. There are theoretical models of the classical
majority based N-Version Programming model which incorporate inter-version failure dependence
[e.g., Eck85, Lit90]. However, most of the theory for advanced software fault-tolerance strategies is
derived under the assumption of inter-version failure independence, and failure independence of
acceptance tests with respect to versions and each other (if more than one acceptance test is used).
Still, the behavior of the strategies in the presence of failure correlation can be deduced from these
simple models by extrapolation from their behavior in extreme situations. Therefore, it is interesting
to see if the effects and special events that can be anticipated from analytical considerations can
actually be observed in real multiversion software.

For example, in the case of implementations involving voting, presence of correlated failures
produces an effect which is usually equivalent to either a reduction, or an increase in the average
cardinality of the space in which voting takes place. An increased probability of coincident but
different incorrect answers will tend to increase the average number of distinct responses offered to a
voter for an input, while an increased probability of coincident identical-and-wrong failures will tend
to decrease the voting space from what would be expected based on the cardinality of the application
output space and version reliabilities (assuming versions are statistically independent). In a model
based on failure independence the effects can be simulated, at least in part, through reduction or
increase in the model output space size.
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To see this consider the following. Assume that all individual version failure probabilities in an
N-tuple are mutually independent [Tri82], have identical failure probability (1-p) over the usage (test)
distribution, and have the same probability of occurrence of each program output failure state given

by %IE’ where: r is the size of the program output space, there is a unique success state j=1, and there

are r-1 failure states, j=2,..,r. When r=2 (binary output space) all failures, and what is more
important all coincident failures of the N-tuple versions, result in identical-and-wrong answers. On
the other hand, under the above assumptions a large value of r translates into low probability that two
incorrect answers are identical (in the analytical and simulation examples given later in this paper an
"r = infinity" implies that the probability of obtaining identical-and-wrong answers is zero). This, in
turn, implies higher probability that responses from coincidentally failing versions are different, and
also increases the avera_z size of the voting space when coincident failures occur. Of course, the
~ voting space size is bounded by the number of versions in the N-tuple. An increase in the number of
coincident version failures can be simulated, in part, by reduction in the value of p which shifts the
peak of envelope of the independent coincident failures profile closer to N. However, in general,
models based on the assumption of failure independence do not capture strong non-uniform failure
coupling that can occur between two or more versions in practice (e.g. sharp spikes seen in the
experimental trace in Figure 3) because the causes of the coupling are different (e.g. identical-and-
wrong responses are the result of a fault rather than a basic change in the output space of the
problem, although the effect may be the same).

An added dimension is failure correlation between an acceptance test and the N-tuple versions, or
lack of mutual independence when two or more acceptance tests are used. The effects can, again only
in part, be simulated by lowering reliability of the model acceptance test.

Nevertheless, we would expect that many of the effects observed in the experiments conducted in a
high inter-version correlation environment would in the simple theoretical models correspond to
small output space (r) and low p effects. Similarly, we would expect that implementations composed
of versions that exhibit low mutual inter-version failure correlation would exhibit many
characteristics that correspond to model computations based on large r values.

3. Empirical Results

In this section we discuss experimental data on reliability of N-Version Programming systems that
use Consensus Voting (NVP-CV), and on Consensus Recovery Block systems that use either
Majority Voting (CRB-MYV), or Consensus Voting (CRB-CV). Consensus Voting and Consensus
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Recovery Block are compared with N-Version Programming that uses Majority Voting (NVP-MV)
and with Recovery Block (RB).

3.1 Experimental Environment

Experimental results are based on a pool of twenty independently developed functionally equivalent
programs developed in a large-scale multiversion software experiment. We used the program
versions in the state they were immediately after the unit development phase [Kel88], but before they
underwent an independent validation (or acceptance) phase of the experiment [Eck91]. This was
done to keep the failure probability of individual versions relatively high (and failures easier to
observe), and to retain a considerable number of faults that exhibit mutual failure correlation in order
to high-light correlation based effects. The nature of the faults found in the versions is discussed in
[Vou90].

For the study we generated subsets of program N-tuples with: 1) similar average> N-tuple reliability,
and 2) a range of average N-tuple reliabilities. We use the average N-tuple reliability to focus on the
behavior of a particular N-tuple instead of the population (pool) from which it was drawn, and to
indicate approximate reliability of corresponding mutually independent versions. In this paper we
report on 3, 5 and 7 version fault-tolerant software systems. The subset selection process is
described in Appendix 1.

In conducting our experiments we considered a number of input profiles and different combinations
of versions and output variables. Failure rate estimates based on the three most critical output
variables (out of 63 monitored) are shown in Table 1. Two test suites each containing 500 uniform
random input test cases were used in all estimates discussed in this paper. The sample size is
sufficient for the version and N-tuple reliability ranges on which we report here. One suite, which we
call Estimate-I, was used to estimates of individual version failure rates (probabilities), N-tuple
reliabilities, select acceptance test versions, select sample N-tuple combinations, and compute
expected "independent model” response. The other test suite, Estimate-II, was used to investigate the
actual behavior of N-tuple systems based on different voting and fault-tolerance strategies. Recovery
Block, and Consensus Recovery Block studies require an acceptance test. We used one of the
developed versions as an acceptance test. This provided correlation not only among versions, but

5Average N-tuple reliability estimate is defined as p = z,_l N and the corresponding estimate of the standard

deviation of the sample as 8 = \’ 2 :.-1 N1 where fi; = Z =1 IS estimated reliability of version i over

the test suite composed of k test cases, s;(j) is a score function equal to 1 when version succeeds and O when it fails
on test case j, and 1- f is the estimated version failure probability.
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also between the acceptance test and the versions. Acceptance test versions were selected first, then
N-tuples were drawr from the subpool of remaining versions. The fault-tolerant software algorithms
of interest were invoked for each test case. The outcome was compared with the correct answer
obtained from a "golden" program [Kel88, Vou%0] and the frequency of successes and failures for
each strategy was recorded.

Table 1. Version failure rates.

Version Failure Rate*
Estimate I Estimate II
-
1 0.58 0.59
2 0.07 0.07
3 0.13 0.11
4 0.07 0.06
5 0.11 0.10
6 0.63 0.64
7 0.07 0.06
8 0.35 0.36
9 0.40 0.39
10 0.004 0.000
11 0.09 0.10
12 0.58 0.59
13 0.12 0.12
14 0.37 0.38
15 0.58 0.59
16 0.58 0.59
17 0.10 0.09
18 0.004 0.006
19 0.58 0.59
20 0.34 0.33

. - — . |
(*) Based on the 3 most important output variables,
"best.acccleration”. Each column was obtained on the basis of a
scparate sct of 500 random cascs.
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180 Coincident Failure Profile
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Number of Versions that Fail Coincidentally
Figure 2. Example of a joint coincident failure profile.
Table 2. Frequency of empirical coincident identical-and-wrong (IAW) events over 500 test cases

for the set of 17 versions shown in Figure 2. The span is the number of versions that coincidentally
returned a JAW answer.

The Span of IAW Events

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

Frequency

2049 1641 16 1 1 215 0 0 0 0 0 0 0 0 O

The failure correlation properties of the versions can be deduced from their joint coincident failure
profiles, and the corresponding IAW response profiles. For example, Figure 2 shows the profile for
a 17 version subset (three versions selected to act as acceptance tests are not in the set). The abscissa
represents the number of versions that fail coincidentally, and the ordinate is the frequency of the
event over the 500 samples. Also shown is the expected frequency for the model based on
independent failures, or the "binomial" model [Tri82]. The deviation from the expected
"independent” profile is obvious. For instance, we see that the frequency of the event where 9
versions fail coincidentally is expected to be about 10. In reality, we observed about 100 such
events. Table 2 summarizes the corresponding empirical frequency of coincident JAW responses.
For example, in 500 tries there were 15 events where 8 versions coincidentally returned an answer
which was wrong yet identical within the tolerance used to compare the three most critical (real)
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variables. Both, Figure 2 and Table 2, are strong indicators of a high degree of inter-version failure
dependence in the versic  t we used.

3.2 Consensus Voting

Theory predicts that Consensus Voting is always either as reliable, or more reliable, than Majority
Voting, In binary output space Consensus Voting reduces to Majority Voting and cannot improve on
it. But for r > 2 Consensus Voting is expected to offer reliability higher than Majority Voting. Theory
also predicts that in N-Version Programming systems composed of versions of considerably
different reliabilities both Majority Voting and Consensus Voting would have difficulty providing
reliability that exceeded that of the most reliable, or "best", component although Consensus Voting
would still perform better than Majority Voting [McA90].

Figures 3 and 4 illustrate the observed relationship between N-Version Programming :th
Consensus Voting and Majority Voting system successes over a range of average N-tuple reliabilities
for 3-version and 7-version systems respectively. The "ragged” look of the experimental traces is
partly due to the small sample (500 test cases), but also due to the presence of very highly correlated
failures. The experimental behavior is in good agreement with the trends indicated by the theoretical
Consensus Voting model based on failure independence.

500 -
) E .’6.
() ..' °o.
5 ¢
S i
® .04 Best := NVP-CV
L Verslon\s \
» “NVP-MV
n H
4 H
8 lllIIIIll'
a %91 EXPERIMENTAL
N=3
N-Tuple Subset B
200 r . - - . S— .
0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average N-Tuple Reliabllity

Figure 3. System reliability by voting (N=3).
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500
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g Version
g 400 - NVP-CV
4 NVP-MV
w
a
§ 300 1 EXPERIMENTAL
3 N=7
N-Tuple Subset D
200 . ) . 7 r T v
0.5 0.6 0.7 0.8 0.9

Average N-Tuple Reliablility

Figure 4. System reliability by voting (N=7).

For instance, we see that for N=3, N-Version Programming has difficulty competing with the "best"
version when the average N-tuple reliability is low. Note that the "best" version was not pre-selected
based on Estimate-I data, but is the N-tuple version which exhibits the smallest number of failures
during the actual evaluation run (Estimate-II). The reason N-Version Programming has difficulty
competing with the "best" version is that the selected N-tuples of low average reliability are
composed of versions which are not "balanced”, i.e. their reliabilities are very different and therefore
variance of the average N-tuple reliability is large. As average N-tuple reliability increases N-Version
Programming performance approaches, or exceeds, that of the "best"” version. In part, this is because
N-tuples become more "balanced" since the number of higher reliability versions in the subpool from
which versions are selected is limited. This effect is further discussed in the text related to Table 3
and Figure 7. We also see that N > 3 improves performance of Consensus Voting more than it does
that of Majority Voting. This is to a large extent because for N>3 plurality decisions become
possible, i.e. in situations where there is a unique maximum of identical outputs the output
corresponding to this maximum is selected as the correct answer even though it is not in majority.

Table 3 gives examples of the detailed behavior of selected individual N-tuples. In the table we first
show the average reliability of the N-tuple (Avg. Rel.), its standard deviation (Std. Dev.), and the

. reliability of the acceptance test used in strategies that need it (AT Rel.). The table then shows the
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average conditional voter decision space (CD-Space), and its standard deviation of the sample.
Average conditional -voter decision space is defined as the average size of the space (i.e. the number
of available unique answers) in which the voter makes decisions given that at least one of the
versions has failed. We use CD-Space to focus on the behavior of the voters when failures gre
present. Of course, the maximum voter decision space for a single test case is N. We then show the
count of the number of times the "best" version in an N-tuple was correct (Best Version), and the
success frequency under each of the investigated fault-tolerance strategies. The best response is
underlined with a full line, while the second best with a wavy line.

Also shown in the table is the breakdown of the decision process for N-Version Programming with
Consensus Voting (NVP-CV), i.e. the frequency of sub-events that yielded the consensus
decision. We recorded the number of times consensus was a successful majority (S-Majority), an
unsuccessful majority (F-Majority), a successful plurality (S-Plurality), an unsuccessful plurality
(F-Plurality), a successful (S-Random) and an unsuccessful (F-Random) attempt at breaking a tie
by random selection, and a failure by fiat (F-Fiat) by which we mean a situation where a tie existed
but all the groups of outputs involved contained wrong answers so any choice made to break the tie
led to failure. The sum of S-Majority, S-Plurality and S-Random comprises consensus voting
success total, while the sum of F-Majority, F-Plurality, F-Random and F-Fiat is equal to the total
number of cases where voting failed (F-Total).

Columns 1 and 2 of Table 3 show the results for two unbalanced low reliability 3-tuples, while
column 3 shows the results for a well balanced 3-tuple of higher reliability. We see that in the former
case the highest reliability is that of the best version while in the latter N-Version Programming with
Consensus Voting offers the best result. An examination of Consensus Voting sub-events shows that
in the case of 3-tuples most of the voting success came from majority agreements. The rest of the
cases resulted in failures because all three versions returned different results. Consensus Voting
attempts to salvage this situation. For instance, for the 3-tuple in column 1 Consensus Voting
attempted to recover 293 times by random selection of one of the outputs, As would be expected, it
succeeded about 30% of the time. Notice that in column 3 N-Version Programming with Consensus
Voting is more successful than Consensus Recovery Block with Consensus Voting. This is because
N-Version Programming with Consensus Voting five times successfully broke tie by random
selection, while at the same time Consensus Recovery Block with Consensus Voting unsuccessfully
acceptance tested the answers.

Columns 4-11 illustrate behavior of 5-tuples, and columns 12-15 behavior of 7-tuples. When N > 3
advantages of Consensus Voting over Majority Voting increase because plurality vote is now
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possible. One problem that N-Version Programming with Majority Voting does not solve are the
small space situations where the vote fails because a voter is offered more than two groups of
answers from which to select the "correct” output, but there is no majority so voting cannot return a
decision. The events are those where there is no agreement majority but one of the outputs occurs
more frequently than any other, and those where there is a tie between the maximum number of
outputs in two or more groups of outputs. For example, consider the 5-version system from column
4 where N-Version Programming with Consensus Voting is more successful than N-Version
Programming with Majority Voting. Correct majority was available in only 321 cases, while in 146
instances the correct output was chosen by plurality. In comparison, the 3-version N-Version
Programming with Consensus Voting system from column 1 is more successful than N-Version
Programming with Majority Voting primarily because of the random selection process (S-Random).

Table 3. Examples of the frequency of voting and recovery events.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N-tuple Structure
Versions 610,16 8,9,18 7,11,13 2,4,8, 6912 4,78 L35 5,7,11 4,57 3,510 4,58 2,3,5 2,3,4 13,8, 5,68
12,16 13,14 1,13 B, 13,20 81 11,17 12,20 7,11, s 11, 9,11, 10,12,
14,20 13,20 15,16 16,20
Maan Value
Avg. Rel. 0.59 0.75 0.9 0.67 0.58 0.86 0.7 0.86 0.86 0.%2 0.71 0.84 0.83 0.8 0.683
Std Dev. 0,36 0.1 0.m 0.26 0.2 0.12 0.20 011 0.13 0.05 0.2 0.13 0,13 0.2 ) 0.5
ATRel. 0.9 09 089 09 0% 091 09 091 0.9 094 04 094 09 091 09
CD-Space 290 25 211 243 420 239 28 243 237 242 266 26 2™ 511 4,0
Std. Dev. 0.9 0.49 0.3 1.29 0.9 0.68 0.4 0.63 0.6l 0.72 0.7 1.02 0,90 1.15 1.4
Success Fraquancy
Best Version X0 4% © @ 49 4@ 1 46 % | a4 b @ Ly =1 ]
NVP-MV 206 | 486 3 25 48 05 i3 54 466 €00 i 455 20 .7
NVP-CV 30 k- | 4 A6 0 aa 461 156 m 486 457 L3 485 436 464
RB 43 461 543 “s 454 a4 e B AP 58 "3 w u 48
CRB-MV k=Y ASB 486 Ly 467 a8 i3 1% mw Ex £y 486 176 £=: ] K8
CRB-CV MO48 B 4T S E O A S B M | M 3 4
Success Frequancy of Copngensus Voting Sub-Events
S-Madority 06 an 484 kvl 25 468 95 4B HS4 466 00 465 455 280 2
F-Majoxity 1 kv o 19 [¢] 0 1B 0 18 0 19 0 0 0 0
S-Plllﬁ"ty o] o] 0 146 42 13 € 18 14 16 n 17 2 146 in
F-Pluallty (o] 0 0 0 2 14 [} 0 ¢} 0 0 15 14 40 X
S-Random 104 ) 5 0 b2} 2 1. . .8, 6 4 4 0 1 10 n
F-Random 189 84 9 0 120 3 1 5 8 M W 3 1 I 16
F-Flat o] 4] ] 14 ..} 0 14 0 0 0 4 0 0 ] [+}
F-Total 190 116 9 i 150 17 k] 5 % u o 18 15 6 %
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Theoretical relations’  between voter decision space cardinality and voting strategies assuming
failure independence is shown in Figure 5 for a simulated 5-version system composed of mutually
independent versions with average N-tuple reliability of 0.856. We plot system reliability of N-
Version Programming with Consensus Voting and N-Version Programming with Majority Voting
against the average conditional voter decision space. The average conditional voter decision space
was calculated as the mean number of distinct results available to the voter during events where at
least one of the 5-tuple versions has failed. The illustrated variation in the average conditional voter
decision space (v) was obtained by varying the output space cardinality from r=2 to r=infinity. This
resulted in the variation in v in the range 2 < v < 2.35. Also shown is the N-Version Programming
2-out-of-N boundary (r = infinity).
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Figure 5. Influence of voter space size on different voting strategies.

Theory predicts that as the decision space increases (v > 2) the difference between the reliability of
the systems using N-Version Programming with Consensus Voting and systems using N-Version
Programming with Majority Yoting increases in favor of N-Version Programming with Consensus

6Reliability of individual versions ranged between about 0.78 and 0.91, standard deviation of the sample was 0.061.

-
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Voting [McA90]. Figure 6 illustrates the observed relationship between system success frequency
and the average conditional voter decision space for a subset of 5-version systems with N-tuple
reliability close to 0.85. Note that in Figure 6 the variation in the voter decision space size is caused
by the variation in the probability of obtaining coincident but different incorrect answers. The
observed behavior is in good general agreement with the trend shown in Figure 5 except that in the
experiment, as the decision space increases, the reliability of N-Version Programming with
Consensus Voting increases at a slower rate and reliability of N-Version Programming with Majority
Voting appears to decrease.
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Average Conditional Voter Decision Space
Figure 6. Voter behavior in small decision space.

In practice, failure probabilities of individual versions have a nonzero standard deviation about
N-tuple mean. Small scatter may, up to a point, appear to increase average reliability obtained by
voting because there may be enough versions on the "high” side of the mean to form a correct
agreement number more often than would be expected from a set where all versions have the same
reliability. But when the scatter is excessive the system reliability can actually be lower than the
reliability of one or more of its best component versions [McA90].

This effect is illustrated in Figure 7 (independent model simulation; 100,000 cases for each point
shown). In the figure we plot reliability of N-Version Programming with Consensus Voting and
reliability of N-Version Programming with Majority Voting against the standard deviation of the
N-tuple reliability (the mean value being constant and equal to 0.95). Also shown is the reliability of
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the best single version obtained from the simulation. The feature to note is the very sharp step in the
best version reliability once some critical value of the standard deviation of the sample is exceeded
(about 0.03 in this example). The effect can be seen for some of the tuples shown in Table 3 (e.g.
columns 1, 2, 4, 10, 11, and 15). Low average reliability systems with a high standard deviation
about the mean tend to perform worse than the “best" version.
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Figure 7. System reliability by Consensus Voting for 5-version systems vs. standard deviation of

5-tuple reliability. The probability of each j=2,..,r> failure state is %__:% where p is the average 5-tuple
reliability.

A general conclusion regarding Consensus Voting is experimental results indicate that N-Version
Programming with Consensus Voting appears 1o behave like its models based on failure
independence predict. The advantage of Consensus Voting is that it is more stable than Majority
Voting. It always offers reliability at least equivalent to Majority Voting, and it performs far better
than Majority Voting when average N-tuple reliability is low or the average decision space in which
voters work is large. When reliability is the issue N-Version Programming with Consensus Voting
should be preferred to N-Version Programming with Majority Voting. A practical disadvantage of
Consensus Voting may be the added complexity of the voting algorithm (or hardware) since the
strategy requires multiple comparisons and random number generation.

3.3 Consensus Recovery Block

Theory predicts that in an ideal situation (version failure independence, zero probability for
identical-and-wrong responses, perfect voter) Consensus Recovery Block is always superior to
N-Version Programming (given the same version reliabilities and the same voting strategy) or
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Recovery Block (given the same version and acceptance test reliabilities) [Sco87, Bel90]. This is
illustrated in Figure 8 using 2-out-of-N voting. It is interesting to note the cross-over point between
Recovery Block and N-Version Programming caused by the finite reliability of the Recovery Block
acceptance test (1-f = 0.9). Of course, the behavior is modified when different voting strategies are

used or if inter-version failure correlation is substantial.

Given the same voting strategy for Consensus Recovery Block and N-Version Programming, in the
presence of very high inter-version failure correlation we would expect Consensus Recovery Block
to do better than N-Version Programming only in situations where coincidentally failing versions
return different results. We would not expect from Consensus Recovery Block more than to match
N-Version Programming in situations where the probability of identical-and-wrong answers is very
high since many decisions would be then made in a very small voting space and the Consensus
Recovery Block acceptance test would be invoked only very infrequently.

The experimental results are shown in Figures 9, 10 and 11. The number of times that the result
provided by a strategy was correct is plotted against the average N-tuple reliability. The same
acceptance test version was used by Consensus Recovery Block and Recovery Block. From
Figure 9 we see that for N=3 Consensus Recovery Block with Majority Voting provides reliability
always equal to or larger than the reliability by N-Version Programming with Majority Voting (given
the same versions). The behavior of the same 5-version systems using Consensus Voting instead of
Majority Voting is shown in Figures 10 and 11. From Figure 10a we see that with Consensus
Voting N-Version Programming becomes almost as good as Consensus Recovery Block at lower
N-tuple reliabilities than is the case with Majority Voting. Figure 10b shows that Consensus
Recovery Block with Consensus Voting is quite successful in competing with the "best" version. We
also see that the expected cross-over point between N-Version Programming and Recovery Block is
present, and that reliability of Consensus Recovery Block with Consensus, or Majority, Voting is
usually at least as good as that by Recovery Block (Figures 9, 10b). However, it must be noted that
given a sufficiently reliable acceptance test, or binary output space, or very high inter-version failure
correlation, all the schemes that vote may have difficulty competing with Recovery Block. Also
observed were two less obvious events described below. Both stem from the difference between the
way Consensus Voting is implemented with N-Version Programming and the way it is implemented
when used in Consensus Recovery Block.

Although Consensus Recovery Block with Consensus Voting is a more advanced strategy than
N-Version Programming with Consensus Voting, and is usually more reliable than N-Version
Programming with Consensus Voting, there are situations where the reverse is true. Because
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Consensus Recovery Block with Consensus Yoting employs the acceptance test to resolve situations
where there is no plurality while N-Version Programming with Consensus Voting uses random tie
breaking, occasionally N-Version Programming with Consensus Voting may be marginally more
reliable than Consensus Recovery Block with Consensus Voting. This will happen when the
acceptance test reliability is low, or when acceptance test and program failures are
identical-and-wrong. Examples of this behavior can be seen in columns 3, 6, 7, 8 and 13 of Table 3.
The difference in favor of N-Version Programming with Consensus Voting is often exactly equal to
S-Random.
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Figure 8. System reliability for different software fault tolerance schemes with 2-out-of-N voting,
N =3, and B; = B2 =P = 0.1 (see Figure 1).
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Figure 9. Consensus Recovery Block system reliability with majority voting.
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Figure 10a. Consensus Recovery Block with Consensus Voting compared with N-Version

Programming with Consensus Voting and Recovery Block.
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Figure 10b. Comparison of Consensus Recovery Block with Consensus Voting with Recovery
Block and best version SuCCesses.
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Figure 11. Comparison of Consensus Recovery Block with majority voting and Consensus
Recovery Block with Consensus Voting strategies.
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Similarly, Consensus Recovery Block with Consensus Voting is usually more reliable than
Consensus Recovery Block with Majority Voting. However, if the number of agreeing versions is
less than the majority sometimes the reverse may be true. For instance, if there is no majority then
Majority Voting will fail and pass the decision to the acceptance test (which may succeed), while
Consensus Voting will vote and, if the plurality is incorrect because of identical and wrong answers,
Consensus Voting may return an incorrect answer. An example can be found in Figure 11 and in
columns 5, 12, 14 and 15 of Table 3.

A general conclusion regarding the observed Consensus Recovery Block implementations is that the
strategy appears to be quite robust in the presence of high inter-version correlation, and that the
behavior is in good agreement with analytical considerations based on models that make the
assumption of failure independence [Sco87, Bel90]. Of course, the exact behavior of a particular
system is more difficult to predict since correlation effects are not part of the models. An advantage
of Consensus Recovery Block with Majority Voting is that the algorithm is far more stable and is
almost always more reliable than N-Version Programming with Majority Voting. But, the advantage
of using a more sophisticated voting strategy such as Consensus Voting, may be marginal since the
Consensus Recovery Block version of the Consensus Voting algorithm relies on the acceptance test
to resolve ties. However, Consensus Voting version of CRB may be a better choice in high
correlation situations where the acceptance test is of poor quality. In addition, Consensus Recovery
Block will perform poorly in all situations where the voter is likely to select a set of identical-and-
wrong responses as the correct answer (binary voting space). To counteract this we could either use
a different mechanism such as the Acceptance Voting algorithm or an even more complex hybrid
mechanism which would run Consensus Recovery Block and Acceptance Voting in parallel and
adjudicate series-averaged responses from the two [Ath89, Bel90]. A general disadvantage of all
hybrid strategies is an increased complexity of the fault-tolerance mechanism.

4. Summary and Conclusions

In this paper we presented the first experimental evaluation of Consensus Voting, and an
experimental evaluation of the Consensus Recovery Block scheme. The evaluations were performed
under conditions of high inter-version failure correlation and version reliability in the range between
about 0.5 and 0.99.

The experimental results confirm the superior reliability performance of Consensus Voting over
Majority Voting. They also confirm that Consensus Recovery Block strategy outperforms simple
N-Version Programming and is very robust in the presence of inter-version failure correlation. In
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general, the experimental results agree very well with the behavior expected on the basis of analytical
studies of the hybrid models. Of course, behavior of an individual practical system can deviate
considerably from that based on its theoretical model average, and so considerable caution is needed
when predicting behavior of practical fault-tolerant software systems particularly if presence of

inter-version failure correlation is suspected.
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- Paper Appendix I

To select subsets of N-tuples with have certain properties such as approximately equal reliabilities we
used the following approach.

We first select acceptance test versions based on Estimate I data (for example, one low reliability,
one medium and one high reliability acceptance test). These versions are then removed from the pool
of 20 versions. Also removed from the pool might be versions which have either very low or very
high reliability to better balance reliabilities of the selected N-tuples. For a given N the remainder of
the versions (a subpool) are then randomly sampled without replacement until an N-tuple which has
not already been accepted for the subset is formed. The average N-tuple reliability is then computed,
and if it lies within the desired reliability range the N-tuple becomes a member the subset. Then the
N-tuple versions are returned to the subpool and the next N-tuple is selected in a similar manner, etc.
Once the subset contains either all possible combinations, or at least 600 N-tuples (whichever comes
first), the subset is sorted by the average N-tuple reliability and standard deviation of the average
N-tuple reliability.

If a single reliability category is desired (e.g. between 0.8 and 0.9) then the first 30 versions with the
smallest N-tuple standard deviation are chosen and run in the experiment.

If a range of reliabilities is desired, the range is divided into categories in such a way that members of
the same category have identical first two digits after the decimal point. Then from each category we
chose the combination that has the smallest standard deviation of the average N-tuple reliability.

We have thus selected a number of subsets. The following are mentioned in the text

N-Tuple Subset A (5 version systems, average S-tuple reliability in the range 0.8 to 0.9, acceptance
test reliabilities of 0.67 (version 20), 0.93 (version 2) and 0.994 (version 18). Version 10 was not
used (too reliable).

N-Tuple Subset B (3 version systems, average 3-tuple reliability in the range 0.5 to 1.0, acceptance
test reliabilities of 0.67 (version 20), 0.89 (version 3) and 0.91 (version 17). Version 10 was used.

N-Tuple Subsets C and D were chosen in a manner similar to set B except that they consisted of
5-tuples and 7-tuples, respectively.

N-Tuple Subset E (5 version systems, average 5-tuple reliability about (.91, no acceptance test)
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. Appendix VI:
Cost Modelling of Fault-Tolerant Software

D.F. Mcallister and R.K. Scott

(Published in Information and Software Technology, Vol 33 (8), pp 594-603,
October 1991)



Cost modelling of fault-tolerant software

D F McAllister and R K Scott*

Costs of a simplex or single-version system are compared with the

Jollowing  three-version Saudt-tolerant  software  systems: N-
version programmiing (N VP), recovery block { RB), and consen-
sus recovery block (CRB). Cost is minimized subject to a system
reliability constraint. The objective Sfunction of the optimization
program is of the form SB/(1=r.)m where the constants B, and 3,
are fixed and the r, are variahles that are reliabilities of the
versions, the acceptance tesi  he case of RB and CRB and the
voter in the case of NVP u: ‘B. The costs are compared for
different values of B, and lues of %, = 0.5, 1, and 2.
Assuming that failures are in.. dent, CRB followed by RB are
the mast cost-justifiable fuault-tolerant technigues considered.
Unless the voter is perfect. NV P does not compete cost-wise with
the other two methods. Indeed, in some cases il Is worse than a
simplex systen.

cost modelling, fault-tolerant software, system reliability

There have been some attempts to model the cost of
multiversion fault-tolerant software. Saglietti and Ehren-
berger' treated the problem of estimating Poisson arrival
rates of failure inputs to determine when it might be
more cost-effective to devote testing time to a single-
version versus a two-version system. Laprie et al.* pre-
sented a simple cost model for the N-version program-
ming and recovery block fault-tolerant software systems.
Their model is used to estimate values of parameters in
the models presented here. Scott ef al? ¢ introduced data
domain reliability models of several fault-tolerant sof-
tware schemes, including N-version programming
(NVP), recovery block (RB), and consensus recovery
block (CRB). These models are extended by coupling
them with a cost function and the results examined when
the cost is constrained by system reliability.

Scott et al.} were first to show that failures can be
correlated in independently developed, functionally equi-
valent software versions, and they developed models that
could be used in treating this correlation in predicting
system reliability. The existence of correlated failures
was corroborated in an experiment by Knight et al.” and
again by Kelly er al®. To treat the failure correlation,
Arlat et al? presented Markov models based on the

identification of fault types and an analysis of the behav-.

iour of fault-activation. The model allows for positive
correlation among faults. Eckhardt and Lee® presented

Depariment of Computer Science. North Carolina State University.
Raleigh, NC 27695 8206, USA.
*[BM. PO Box 12195, Research Triangle Park. NC 27709. USA

another model for the analysis of coincident failures in
multiversion software.

If failures are dependent, Scott ef al.'s models’ require
estimation of conditional probabilities, which signifi-
cantly increases the parameters in a reliability model.
Hence, for tractability the authors restrict their develop-
ment to three-version systems and assume that software
failures are statistically independent, i.e., that failures are
not correlated. The authors’ results will provide a fower
bound on costs when failures are correlated as version,
voter, and acceptance test reliabilities must be higher to
meet a system reliability constraint that will increase
system costs.

The reliability of a software module is the probability
that it produces the correct result for a given input. The
authors’ notation will be consistent with their previous
work. Let r,. r», and r; be reliabilities of each version of a
three-version fault-tolerant system, let B be the reliability
of the acceptance test in RB and CRB, let V be the
reliability of the voter in NVP and CRB, and let S be the
system reliability. Then for NVP:

Swplrirar, VY = Virrs + ninc +nnc— 2r,r.ry) )]

‘ty of rejecting a
y of accepting an

In RB. it is assumed that the prob:
correct answer is equal to the proba-
incorrect one. In this case RB becor:

SealrirnrnB) = B(ry + nirs i +rB—-2rrB+rrB
+ r,,B - 4rrr B+ 1B - 2r.r\ B
— 2r.n\B + ArrarBY) 2)

while CRB is defined by:

ScrslrirarnBV) = SeslrirariB) + Savp(rirarad) —
Suu(riraraB) Swvelrirara V) 3)

While the equations tend to become visually compli-
cated. they are simple to treat using a symbol manipula-
tion program such as Mathematica'!. In addition, some
simplifying assumptions will be made for tractability and
understanding.

The optimization problem of minimizing systems cost
will be treated subject to the constraint that system relia-
bility is fixed. The nonlinear optimization problem
becomes:

Minimize C(r,.r,.rnB. V) (&)

subject to the constraint
Str.r.ruB V) = R

Since reliabilities are probabilities, there are the addi-



;-
tional constraints that the r, B, ¥, and R must lie
between 0 and |.

The next section discusses the choice of a cost func-
tion. Then a special, easily solved subcase of the con-
strained optimization problem is treated. followed by
treatment of a more general version of the optimization
problem, solved using Lagrange multipliers. Finally, the
results are summarized.

COST FUNCTION

It is assumed that the development cost increases eXpo-
nentially as the reliability of a version approaches 1. This
follows directly from data domain reliability modelling’
as adding a correct digit to the reliability estimate of a
software module requires an order-of-magnitude more
test cases if random testing is used. In addition, the cost
function should have the line r=1 as a vertical asymp-
tote. There are many choices for a cost function with the
above properties, and the techniques proposed here can
be applied to others also. The authors have chosen the
cost function for a single version to be:

cn=p1-n-+c

where r is the reliability of a version, and «, B, and ¢ are
positive constants that control the shape and location of
the cost function. The constants f and ¢ determine the
initial or start-up cost when r=0. Since the optimization
results are independent of the constant ¢, which appears
linearly in the equation. it will be eliminated from the
definition of C henceforth. The final cost can be aug-
mented by ¢ without changing the optimal reliabilities.

The constant % controls the rate at which the cost

increases as » approaches 1, and the constant § can be

used to control the initial cost and differences between

development and testing costs of each module. In the
most general case, each version, the acceptance test, and
the voter can have different values of a, B with different
reliabilities. To reduce the dimensionality of the

problem, attention is restricted here to the case when all

versions have the same reliability r and = is the same for
all components, including the voter and the acceptance
test.

In the next section it is assumed that the reliabilities of
the acceptance test (B) and the voter (V) are equal to r.
The cost function in this case becomes ZB,/(I —r)* and
hence the sum of the Ps is just a multiplicative constant.
The worst case is assumed where Y B, is the number of
modules involved in the fault-tolerant system (including
the acceptance test and a voter).

In the section after that the constraint will be relaxed

that the reliabilities of the voter and the acceptance test
must be the same as the versions. There are parts of the
development cycle that are common to all versions, such
as the writing of the specification, and testing can be
done in parallel using such techniques as back-to-back
testing as recommended by Saglietti and Ehrenberger!

and Vouk'>. It is to be cxpected that the B values of the

acceptance test (B5) and the voter (8;) will be less than or

sondl 1Y mA € L L 1991

Table 1. Cost of three-version NVP assuming perfect voter and
nocost(B, =1,p. = 0)

=05 a=1 q = 2'
R r(R) C(R) U(R) C(R) U(R) C(R) U(R)
09 0.804200 6.8 32 153 10 78.2 100
099 0941097 123 10 509 100 864.7 10000
0999 0981630 22.1 316 1633 1000 8890 1000000
0.9999 0.994215 394 100 518.5 10000 89642 {EOR
0.99999 0.998{73 70.2 316.2 1642.0 100000 898760 1E10

equal to the B values of the versions because, in general,
an acceptance test and a voter should be less complex to
write and more easily tested than any of the versions.
Two subcases will be considered:

o the B, of the versions are equal to |
o the B, of the versions are decreasing in accordance with
the cost relationships proposed by Laprie et al .

The authors will examine the behaviour of the cost func-
tion for different values of 2 and try to summarize the
results and impart some intuition. The next section first
treats the special case when:

rlzrlzr‘zB:V

This reduces the above optimization problem to a
straightforward root-finding problem for functions of a
single variable. It is more tractable than the general case
and provides useful bounds.

MINIMIZING COST SUBJECT TO
RELIABILITY CONSTRAINT

First the case is treated where all exponents x are equal
and all reliabilities are constrained to be equal.

N-version programming

Since the model of NVP of Scott er al.? does not include
an acceptance test and assumes a perfect voter with no
cost (¥ = 1 and B, = 0), it will be treated first. As it is
being assumed thatr, = r, =r; = randB, =g.= B =
B, = 1, the cost function becomes (C(ry = 3(1—ry-*and
the system reliability is:

Sawp(r) = 3r1 = 21} @
The function Syvp(r) is monotone on the interval [0.1]
and hence the equation Syye(r) — R = Ohasa single real

root, denoted by r(R), in [0,1]. In this case the optimal
cost is:

~ C(r(RY) = 3/(1=r(R)Y ' ' %

As it is assumed that B, = I, the cost of a system with a
single or unit version with the same system reliability is:

U(R) = L (1= Ry (5

“The right-hand side of equation (5) is monotone increas-

ing in R. Table 1 presents its values fora = 0.5, 1,and 2
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Table 2. Cost of three-version NV P assuming nonperfect voter 0.

)

R H{R) x=0.5 3=1 r=2
09 0917647 13.9 48.6 589.8
0.99 0.99027 40.6 411.5 42329
0.999 0.999003 126.7 4012 40E®6
0.9999 0.999900 400 40000 4ES8
0.99999 0.999990 1264.9 4ES 1E10

for R = 0.9, 0.99, 0.999, 0.9999, and 0.99999. As would
be expected, the value of  is critical in drawing conclu-
sions when comparing the cost of a single-version versus
a three-version fault-tolerant system. When high system
reliability is required it is more likely that a three-version
system will be more cost effective than a single-version
system in the case that the voter is perfect and has zero
cost.

It is now assumed that the voter is neither perfect nor
cost free. Let J be the reliability of the voterand B, = 1.
The model for the reliability of a three-version system
where all the version reliabilities are equal becomes:

SwelVr) = V@3 = 2rY ()

Assuming o, = o, and ¥V =r, the reliability constraint
becomes R = 3r* — 2r. If the function 3r* — 2rtfor 0 <
r < 1 is graphed, it is found to be monotone and lies
below the line 3 = r (see Figure 1). The cost for this model
is C(r(R)) = (3 + By/(1—r(R)" Table 2 assumes that
B, = 1, hence C(r(R)) = 4/(1 —r(R))". The cost of a unit
version is the same as that given in Table I and is omit-
ted.

Note that the imperfect voter causes r(R) to be larger
for each R compared to the perfect voter case. A larger
r(R) implies a greater cost per version. It is clear that a
simplex system with the same system reliability will now
be less costly because r(R) = R for R close 1o I. As the
same is being paid (in terms of «) for the voter as for the
versions, and it is assumed that the development of n
versions is n times the cost of the development of a single
version, it can be the case that an imperfect voter IMR
software system will be less cost effective than a simplex
system. While this appears to be a startling result, it is
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Figure 2. Reliability of RBand CRB assumingr = B =V

Table 3. Cost of RB(B=r, o, = 2,)

R rR) 1=0.5 a=1 A=2
09 0.790108 8.7 19.0 90.8
0.99 0922202 143 514 660.9
0.999 0.971875 238 142 5047.8
0.9999 0.990438 409 4183 43748
0.99999 0.996886  71.7 1284.5 41ES

due to the assumption of equal development costs {equal
Bs and xs). Tt will be seen that when the constraint that V
= ris removed and the Ps are allowed to decrease NVP
becomes more competitive.

Recovery block

If B = r then the system reliability becomes:
S ry=4dr =8+ 2+ 20t r )

This sixth-degree polynomial is also monotone in [0,1],
which implies Sga(r) — R has a single real root in [0,1].
Figure 2 includes a graph of Spa(r). Again assuming that
Bs = B, = 1 and %5 = 2, this gives Table 3, which
provides the values of C(R) = 4/(1 —r(R))*. Comparing
Tables 1 and 3, it is clear that RB is more cost effective
than three-version NVP with a perfect voter and is more
cost effective than a single-version system for high-relia-
bility cases.

Consensus recovery block

The reliability of the CRB? is given by equation (3). Il V
= 1, i.e., the voter has reliability 1, and B, = 0, then
Swve(¥.r) is given by equation (1). If it is also assumed
that B = r then Sgg(r.B) is given by equation (3), this
gives:

Serslr) = 87 — 281 + 2877 + 20 — 128 — r' + 47 (3)
This function is monotone over [0,1]. Table 4 assumes
that B = ! and the voter has no cost. Hence C(r(R)) =

4/(1—r(R))*. It is seen that CRB with a perfect voter is
more cost effective than any of the previous systems, as

information and software technology



Tae 4. Cost of CRB with perfect voter (B = r, B, = B, = 1, B,

=0,and o5 = %)

R r(R) 2=0.5 =] n=2

0.9 - 0.632687 66 - 109 29.6
0.99 0.796570 8.9 19.7 96.7
0.999 0.882487 1.7 34 289.7
0.9999 0.931504 153 58.4 852.6
0.99999 0960196 20 100.5 25247

Table 5. Cost of CRB(V = B=1r, % = % = 2,)

R r(R) x=0.5 =1 a=2
09 0.698340 9.1 16.6 54.9
0.99 0.847012  12.7 36.7 213.6
0.999 0920723 178 63 795.6
0.9999 0.959660 249 123.9 3072.5
0.99999 0.980051 354 250.6 12563

would be expected, and the cost grows relatively slowly
as R increases. For high-reliability systems, it will be
significantly cheaper than a single-version system.

If equation (2) is used for NVP and equation (3) for
RB then this gives:

Scu(r) = 8r1® — 28 + 281 — 2 — M+ 5+ 2 (9)

This is also monotonic on [0,1] (see Figure 2). Table 5
gives the values when all as, rs, and } and Bare equal. As
it is assumed that B,- = B = | then the cost function is
C(R) = 5/(1=r(R)).

Graphs of equations (7) and (9) are given in Figure 2.

From Tables 1 to 5 and the assumptions of this
section, it is clear that the most cost-effective system in
terms of total cost is CRB with a perfect voter followed
by CRB with an imperfect voter. In general, CRB will be
significantly less costly than either N-version program-
ming, recovery block, or a single-version system. The
feast cost-effective system is NVP with an imperfect
voter. Under the authors’ assumptions it is even worse
than a simplex system with the same reliability. As it has
been assumed that all reliabilities are equal and all s are
equal these results provide an upper bound for the case
that r, ¥, and B are not required to have equal reliabili-
ties. This is demonstrated in the next section.

ELIMINATING EQUAL RELIABILITY
CONSTRAINTr =V =B

This section treats the case when r, B, and V can have
different values in the optimization problem (O). The

cost will be minimized subject to the constraint that the _

system reliability must be met.

The authors have chosen to use the constrained opti-
mization technique of Lagrange multipliers'>. Applying
this technique yields the following optimization problem.
Let A be a "Lagrange multiplier’, C(x,.xs,...x,) the objec-
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tive function to be optimized, and let G(x),Xz...x,) = K
be the constraint. Form the function:

U = C(x,,X5...%) + AG(x ,Xa. X)) '

A solution (x,, Xy,....X,, A) to the following set of nonli-
near equations is an optimal solution to the original
optimization problem:

cujéx, = 0,
fujfx, = 0,
cuicx, = 0

G(x,, x5..0x) = K

The authors have applied unconstrained Newton’s
method for several variables'? successfully for most cases
of this problem. The requisite partial derivatives were
calculated symbolically using Mathematica'’.

Some discussion of the numerical properties of the
iterative technique is in order. Newton’s method does
not guarantee convergence for arbitrary starting values.
Furthermore, convergence can occur at a point for which
r, V, or B lies outside the allowable range, i.e., these
values must be probabilities and lie in the interval [0,1].
Hence starting values are critical. The authors used a
Pascal program called MINCOST, which runs on an
IBM PC. All calculations were in double precision,
which is approximately 14 decimal digits. The program
allows the user to choose initial values for r, B, ¥, and A.
Newton's method uses a linearization of the nonlinear
equations and solves the linearized version to calculate
correction values to the current estimate of the solution.
Once the correction values are sufficiently small or the
number & of allowable iterations is exceeded the iteration
is halted. If convergence has taken place and the values
of r. B, or V lie outside the allowable range or if the
number of iterations k has been exceeded then a search
for a better starting value begins. This is accomplished by
adding and subtracting a change value 8 to each of r,V,
and B until convergence in range takes place. If no con-
vergence occurs for a given 9§, then 28 is tried and the
search for convergence in range begins again. The pro-
cess continues until convergence is achieved or a reliabi-
lity lies outside [0,1]. If the system is used to find optimal
values for several different Rs then arranging these values
in ascending order, R, < R, <..< R,, and using the
solutions for R, as starting values for the optimization
problem for R,., usually gives good results, especially if
the R, are ‘close.’

For high system reliabilities of 0.9999 and 0.99999,
numerical instabilities sometimes occurred. The instabili-
ties manifested themselves when comparing costs for a
given value of o for P values that were close (within 0.1).
To correct these instabilities, the authors employed a
technique called ‘damped Newton™é. Instead of adding
8, the Newton correction vector, a multiple of 8 is used.
The multiple (1/2,j = 1, 2, 3,..., is chosen so that the
residual error decreases for successive iterations. When
damped Newton was applied the instabilities disap-
peared. Note that j should not be chosen so large that the

&
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components of & become smaller than the desired con-
vergence criterion, of else the process will appear to
converge prematurely.

N-version programming

Recall thatif r, = r, = r,, equation (6) gives the refiabi-
lity:
Salr V) = V(2rt — 3r9)

Recovery block

If 8 is not equal to 7 then Sey(r.B) becomes the bicubic
polynomial:

Su(r.B) = 4B — 4BV + B — 4B + Br + Br + B
+ Br (10)

Note that the surface Spy(r.B) is symmetric in and B. As
it is assumed that r, = r, = ry = r, the cost function is of
the form kj(1—r)* + B/(1— By Hence it would be
expected that if k > By ie.r is weighted more than B,
which is usually the case, then r < B in the optimal
solution. Tt will be found that this is the case in the
numerical results.

Consensus recovery block

Scra(r,B, V) is given by equations (6) and (10) in terms of
Swvp and Sgg and equals:
H(B+ B+ B + Br— 4B'r + Br* - 4B + 4B + WV
2 apV = 38RV — 3BRV = 3BV = Briv + 2Bt
1481V — BrV + 12BrV — BV + 2BV — 8BV
+ 88'r'V) (1

Numerical results

The single-variable case discussed previously is a relati-
vely tight upper bound for the case when all B values are
equal. Hence for quick approximations, assuming that
all reliabilities, Ps and s are equal gives good results and
is considerably more tractable. The minimum costs were
computed for several combinations of Bs and as for the
system reliabilities 0.9, 0.99, 0.999, 0.9999, and 0.99999.

Figures 3-5 are plots for NVP, RB, and CRB of the

1.000

0.980|- e
z ' -
= 0.960}- Acceptance test_ _ —
9 ="
s OO -7
€ 0920}
®
‘é 0.900
E 0880 Version
8]

0.860

1

0.840
0.080 0.983 0.985 0.988 0.990 0.993 0.995 0.998
System reliability
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Figure 5. Plot for CRB of version, voter, and acceptance
reliabilities for R = 0.98 to 0.99999. 8 = 1, x =1

version, voter, and acceptance reliabilities from R = 0.98
to R = 0.99999 in the optimal solution for the case that
the Bs are 1 and the as are equal and set to 1. The cases
fora = 0.5and a = 2 are similar. Note that in Figure 3
the voter must be considerably more reliable than the
versions and that a simplex system is less costly by a
factor of 2 to 3. As shown in Figure 4, the acceptance test
must also be more reliable than the versions, but by at
most 0.05. The RB is less costly than a simplex system in
this range, with the difference in costs increasing as
higher system reliability is required. The CRB is also less
costly than a simplex system. Figure 5 shows that the
acceptance test must be more reliable than either the
voter or the versions, and there is a crossover point
where the voter must be more reliable than the versions.
The cost ratio between CRB and RB is approximately
0.5t00.6.

For o = 0.5, a simplex system was less costly than
cither RB or CRB until system reliability was above 0.99.
This was not true fora = lora = 2. This implies that as
& increases, both RB and CRB will be relatively less
costly for high system reliability. Figure 6 shows the
optimal cost versus system reliability of each of the fault-
tolerant techniques considered.

As the objective function is linear in the constants B.
for a given fault-tolerant technique holding the as fixed
will result in identical optimal values for r, ¥, and Bfora

information and software technology
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given system reliability R if all Bs in the objective func-
tton are multiplied by the same constant k. Hence the
problem is interesting only when the values of the Bs are
changed relative to each other for given values of the as.
To avoid getting lost in a morass of data the problem has
been partitioned into three cases. In the first two cases’
the values of the Bs for the versions are set to | and the
optimal system costs calculated for the cases R = 0.9,
0.99, 0.999, 0.9999, and 0.99999 for various values of B,
and B, The Appendix, Tables 813, gives the results for
Bi=PBg=01and ! anda = 0.5, I,and 2.

Case 1

In case 1 both the B values for the acceptance test and the

voter are equal: they were varied from 0.1 to 1.0 in steps

of 0.1. These results are plotted for the case R = 0.99999
in Figures 7-9. In all cases, for a given system rehablhty
R the cost of NVP > cost of RB > cost of CRB. As o
increased, the difference between the three increased con-
siderably, often by several orders of magnitude. For R =
0.99999 and a = 0.5, CRB is an order of magnitude less
costly than NVP. For a = 2, the difference increases to
over six orders of magnitude.

Also, for a given system reliability, ryyp > rrs > Ferps
Fave > Vers. and Byy > Begy. Except for low system
reliabilities (R = 0.9), it was also the case for CRB that B
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> V' > r. The acceptance test is considerably more
critical than the voter or the versions.

RB and CRB were always less costly than a simplex
system, which was not the case for NVP. As the voter
became more costly to develop (B, approached 1), the
difference between a simplex system and NVP became
more pronounced. Even if the voter and the acceptance
test have the same development cost as the versions, it is
always better to implement CRB than any of the other
techniques.

It 1s clear that « has a more significant effect on cost
than either B or B,. Both RB and CRB are approxima-
tely loglinear for larger values of B, and By, less than 1.

Case 2

In case 2, as the CRB requires an acceptance test and a
voter, to gain some intuition on the relationships
between B, and B, they are varied from 0.25 to | in steps

“of 0.25. As in case | the Bs for the versions are I. In

Figure 10 the cost is shown as a two-variable function of
B, and B for the case @ = 1 and R = 0.99999. The cases
for o = 0.5 and 2 are similar.

The function is monotone in both variables. The cost
is slightly more affected by an increase in ;.

The results for cases | and 2 were consistent among the
cases considered.
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Table 6. Calculation of Ps using minimum, maximum, and aver-
age costs

B NVP RB CRB

3B 1.78.2.25.2.71 1.78,2.37.2.96 RBY B, + B

B 1.00 1.00 1.00

B 0.001(=0). - 0.001(x0). 0.05.
0.05. 0.1 0.01

Bs - 0.001(x0). 0.001(x0), 0.15,

0.15.0.3 0.3

B, =B L2ATB-B- L23B-B  1208-B-
BI) - Bu) Bl - Bu)

Case 3

In this case the range of costs proposed by Laprie ¢ al:
was used for implementing NVP and RB. Their costs are
expressed as the ratio of the fault-tolerant system cost L0
a simplex system cost for three environments: a maxi-
mum, a minimum, and an average cost. Furthermore,
they have proposed that the cost of the voter in an NVP
system varies from 0 to0 0.1 of the cost of a single version.
Similarly, the overhead for RB ranges from0to 03 ofa
single-version cost.

For each method of fault tolerance three runs were
made using their maximum, minimum, and average
costs. The values of the optimal solutions are given in
Tables 14-16 in the Appendix. First, it was assumed that
the Bs in the model should sum to their ratio, then the
costs were normalized to the primary or first version’s
cost by setting B, = 1. Table 6 shows how the other Bs
were calculated.

The values of the Bs for the low, average, and high cost
environments are given in Table 7. Tt was assumed that
the cost of the second and third versions were the same
and that for CRB, B, was the same as for NVP and B;
was the same as for RB.

Considering Table 14 and Figure 11 (see Appendix).

'able 7. Values of B from Laprie et al.’

Bs
Low  Avcrage High

NVP

First version 1.000 1.000 1.000

Other versions 0.390  0.600 0805

Voter 0.001 0.051 0.100
RB

First version 1.000 1.000 1.000

Other versions 0.390 0610 0830

Acceptance test 0.001  0.151  0.300
CRB o

First version , 1.000 1.000 1.000

Other versions 0390 0.610 0830

Voler 0.001  0.051 0.100

Accepiance test 0.00! 0.151 0300

the minimum cost environment, it can be seen that in all
cases except for the lowest system reliability requirement
using NVP that a software fault-tolerant system is
cheaper to implement than a simplex system with the
same reliability. Also CRB is less expensive than RB,
which is in turn cheaper than NVP. As the programming
environment becomes more expensive, as in the average
cost case. Table 15 and Figure 12 (see Appendix) show
that the required system reliability must be greater than
0.95 for NVP to be cost competitive with a simplex
system. The RB and CRB are always much cheaper than
a simplex system. Similar results appear in Table 16 and
Figure 13 (see Appendix) for NVP systems in a maxi-
mum cost environment. Also note that due to the high
cost of the acceptance test, RB only becomes cost effec-
live as the system reliability approaches 0.95. In all cases,
the CRB provides the cheapest system reliability, even
though five different software modules are required:
three versions, a voter, and an acceptance test.

SUMMARY AND CONCLUSIONS

The above results have shown that in the case that fai-
lures are independent, consensus recovery block
followed by recovery block are the most cost-justifiable
fault-tolerant techniques to be considered. Unless the
voter is perfect, N-version programming does not com-
pete cost-wise with the other two methods. Indeed, in
some cases it is worse than a simplex system. It is inter-
esting to note that consensus recovery block, which con-
tains both voting and recovery block, can provide con-
siderable reduction in cost for a given system reliability
over the other techniques, even when the cost of develop-
ment of the voter and the acceptance test is the same as
for the versions.

The authors are currently attempting to relax the con-
dition that all version reliabilities are equal and that
failures are independent. They intend to move to five-
and seven-version systems (o determine how costs are
related.

information and software technology
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Figure 11. Plot of costs for minimum cost environment

One version NVP RB CRB
r Cost r V Cost r B Cost r B V Cost
0.90000 0.50000 0.82200 0.9822‘§ 0.89554 0.58268 0.96387 0.71350 0.50993 0.93884 0.80310 0.69154
0.99000 1.00000 094858 0.99764 1.18439 0.81147 0.98905 0.89570 0.71185 0.97204 092418 0.81624
0.99900 1.50000 0.98481 0.99968 1.47677 091483 0.99659 1.07887 0.82594 098627 0.96703 0.93424
0.99990 2.00000 0.99556 0.99996 1.78271 096181 0.99899 1.26714 0.89390 0.99323 0.98527 1.05114
0.99999  2.50000 0.99872 0.99999 2.10782 0.98307 0.99971 146212 0.93517 099672 0.99340 116907
B,=PB.=p =10and B, =B, = 0.1
o =% = o, = day=a, = 0.5
Table 9. Component reliability and log (cost)
One version NVP RB CRB
r Cost r V Cost r B Cost r B 4 Cost
0.90000 0.50000 0.86367 0.94306 1.09735 0.69952 0.87230 0.91757 0.65491 0.81071 0.55906 0.949%4
0.99000 1.00000 0.96368 0.99384 1.45455 0.87573 0.95772 1.12626 0.81259 090639 0.81011 1.09667
0.99900 1.50000 0.99016 0.99929 1.83078 054863 0.98644 1.33895 0.89334 0.95253 091649 1.23644
0.99990 2.00000 0.99737 0.99992 223250 097946 0.99594 1.56386 0.93865 0.97634 0.96359 1.37754
0.99999  2.50000 0.99931 0.99999 265873 099223 0.99882 1.79996 0.96479 0.98857 0.98427 1.52264
Bi=P,=p.=10andB; = P, = 1.0

g, ==, =d;=a, =05

LY X
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Table 10, Component reliability and log (cost)

Onc version NVP RB CRB
R —
r Cost roo b Cost r B Cost r B b , Cost
0.90000 1.00000 0.83374 097165 1.33386 061578 0.93850 097480 0.53908 090186 0.78784  0.90350
0.99000  2.00000 095511 0.99584 195841 083342 0.07949  1.35956  0.73662 0.95220 090988 116412
0.9¢ = Tooonn 008809 099942 262826 092833 099313 175139 084501 097545  0.95835 141212
0.99990 - gs0701 099993 337433 0.97007 099782  2.16486 090833 098742 098051 1.66093
0.99999  >.uLud0 099929 099999 420429 0.9%804 0.99934  2.60454 094602 099368  0.99094 191617
B=p=pB= 10and B, = B = 0.1
PR TR S PR = 1.0
Table 11. Component reliability and log (cost)
One version NVP RB CRB
r Cost r b Cost r B Cost T B ¥ Cost
0.90000 1.00000 0.87379 0.94119 1.6103 0.72391 0.85161  1.24564  0.66635 0.77721  0.61989 1.20711
0.99000  2.00000 0.96971 0.99268 2.37218 089114 094788 1.6697% 0.82220 0.88843 0.82888  1.50078
0.99900  3.00000 0.99287 0.99915  3.20399  0.95789 0.98311  2.10430 050155 094266 092081 1.78204
0.99990 4.00000 0.99838 0.99991 4.10399  0.98468 099420 2.56600 0.94349 0.97098 0.96360 2.06807
099999  5.00000 0.99998 0.99999  5.39217 099478 0.99817 3.04898  0.97029 098572 098345 2.36445
B =p. =B = {0and Py =P =10
7‘=1_-='1,='1,,='1‘=1.0
Table 12. Component reliabilit) and log (cost)
One version NVP RB CRB
r Cost r I Cost r B Cost r B V Cost
0.90000 2.00000 0.85226 0.95646 337931 0.66513  0.90020 1.56577 0.58157 0.84795  0.76864 1.16788
0.99000 4.00000 0.96539  0.99349 168686 0.86413  0.96432 238211 0.76955 0.92293 0.89333 191442
0.99900 6.00000 0.99262 099916 519337 094614  0.98742 323177 0.86954  0.95946 0.94806 2.43804
0.99990 8.00000 0.99857 0.99991 710773 0.97995  0.99581 411933 092639 0.97389 097471 297057
0.99999  10.00000 0.99966 0.99999 8.71782  0.99305 0.99865 5.06931 0.95919 0.98929 0.98786 3.52524
B =B =p= 10and By = B = 0.1
2= FELT A TN =20
Table 13. Component reliability and log (cost)
Onc version NVP RB CRB
r Cost r b Cost r B Cost r B 4 Cost
0.90000 200000 0.88586 0.93371 166075 0.74766  0.83054 191349 067738 0.74782 0.65793 1.72504
0.99000 400000 097652 0.99161 479364 090399 0.93840 277012 083108 0.87285 0.83%06 2.31301
0.99900 6.00000 0.99548  0.99906 610758 0.96442 097811 3.64887 0.90877 0.93436 0.92203 2.87869
0.99990 3.00000 0.99917  0.99990 8033590 0.98765 0.99265 4.58190 0.95121 0.96652 0.96252 3.45699
0.99999  10.00000 0.99976 0.99998 9.42361  0.99593 0.99762 5.55410 097457 098342 0.98225 4.05876
p=p=B= 10and Py =B =10
4 = A= A= Xy =N =20
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Table 14. Component reliability and log (cost)

Onec version NVP___ o RB CRB
r Cost r -V 7 Cost r B Cost r B 14 + Cost
0.90000 1.00000 0.80863 099541 097860 0.54795  0.99057 0.60677 0.45886 0.98463 0.95925 0.52878
0.99000 2.00000 094341 099924 151543 0.79237 0.99688 0.94908 0.67538 0.99270 0.98332 0.75437
0.99900 3.00000 0.98286 0.99987 2.04771 0.90479 0.99893  1.29284 0.80100 0.99623 099216 0.97023
0.99990 4.00000 0.99487 0.99998 259536 0.95658 0.99964 1.64132 0.87699 0.99803 09918 1.18297
0.99999  5.00000 0.99816 0.99999 3.04677 0.98036 0.999890 1.99720 092375 0.99897 099812 1.39535

Low cost environment

Table 15. Component reliability and log (cost)

One version NVP RB CRB
r Cost r ¥ Cost r B Cost r B 14 Cost
0.00000 1.00000 0.82948 0.97541 117540 0.64270 0.91782 0.90583 0.56042 085763 0.84523  0.80891
0.99000 2.00000 0.95329 0.99632 1.78498 0.84860 097233 | 30363 0.75034 092910 093461 1.07194
0.99900 3.00000 098737 0.99947 243328 0.93648 099075 1.70983 0.85397 096282 097016 1.32165
0.99990 4.00000 0099676 099993 3.15311 097437 099708  2.14078 0.91420 098053 0.98626 1.57218
0.99999  5.00000 0.99926 0.99999 3.90712 099023 099911  2.59855 0.94986¢  0.99000 0.99373  1.82932

Average cosl environment

Table 16. Component reliability and log (cost)

Onc version NVP RB CRB
r Cost r V Cost r B Cost r B V Cost
0.90000 1.00000 083552 0.97010 1.28359 0.66553 0.89989  1.03939 0.58549 0.82471 0.82487 093951
0.99000 2.00000 095586 0.99565 191439 0.86104 096598 1.44654 0.76755 091192 092538  1.20922
0.99900 3.00000 098837 0.99940 2.59301 0.94296 0.98859 186293 0.86547 0.95365 096604  1.46523
0.99990 4.00000 099707 0.99992 331928 097765 0.99639  2.30558 092183 0.97572 0.98447 172282
0.99999  5.00000 0.99907 0.99998 3.93675 0.99180 0.99889  2.77405 0.95489  0.98755 0.99297 198810

High cost environment
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0.90000 0.95000 0.99000

Figure 12, Plot of costs as programming environmen!

becomes more expensive
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Figure 13. Plot of costs for maximum cost environment
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